首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个线性方程组: 其中向量b=(b1,b2,…,bm)T≠0.证明:方程组(Ⅰ)有解的充分必要条件,是(Ⅱ)的每一解y=(y1,y2,…,ym)T都满足方程b1y1+b2y2+…+bmym=0.
设有两个线性方程组: 其中向量b=(b1,b2,…,bm)T≠0.证明:方程组(Ⅰ)有解的充分必要条件,是(Ⅱ)的每一解y=(y1,y2,…,ym)T都满足方程b1y1+b2y2+…+bmym=0.
admin
2018-08-03
39
问题
设有两个线性方程组:
其中向量b=(b
1
,b
2
,…,b
m
)
T
≠0.证明:方程组(Ⅰ)有解的充分必要条件,是(Ⅱ)的每一解y=(y
1
,y
2
,…,y
m
)
T
都满足方程b
1
y
1
+b
2
y
2
+…+b
m
y
m
=0.
选项
答案
记A=(a
ij
)
m×n
,x=(x
1
,x
2
,…,x
n
)
T
,y=(y
1
,y
2
,…,y
n
)
T
,则方程组(Ⅰ)的矩阵形式为Ax=b,方程组(Ⅱ)的矩阵形式为A
T
y=0,方程[*]b
i
y
i
=0的矩阵形式为b
T
y=0.必要性:设方程组(Ⅰ)有解x,y为(Ⅱ)的任一解,则b
T
y=(Ax)
T
y=x
T
(A
T
y)=x
T
O=0,故(Ⅱ)的任一解y都满足方程b
T
y=0.充分性:在充分性条件下,两个齐次线性方程组[*]=0与A
T
y=0同解,故其系数矩阵的秩相同,从而系数矩阵的转置矩阵的秩也相同,即r(A)=r(A┊b).由有解判定定理知方程组(Ⅰ)有解.
解析
转载请注明原文地址:https://jikaoti.com/ti/FV2RFFFM
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设齐次线性方程组,其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设向量组α1,α2,…,αn—1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
假设随机事件A与B相互独立,P(A)=P=a一1,P(A∪B)=,求a的值.
设随机变量X~B(1,),Y~E(1),且X与Y相互独立.记Z=(2X一1)Y,(Y,Z)的分布函数为F(y,z).试求:(Ⅰ)Z的概率密度fZ(z);(Ⅱ)F(2,一1)的值.
设f(x0)≠0,f(x)在x=x0连续,则f(x)在x0可导是|f(x)|在x0可导的()条件.
考虑柱坐标系下的三重累次积分I=3dz.(Ⅰ)将I用直角坐标(Oxyz)化为累次积分;(Ⅱ)将I用球坐标化为累次积分;(Ⅲ)求I的值.
判定下列级数的敛散性,当级数收敛时判定是条件收敛还是绝对收敛:
随机试题
关于恶心伴随症状的临床意义,下列哪项正确?()
地下室的防水的构造方案有()等方法。
压力容器设置的安全附件中属于保护类安全附件的有()。
境内单位和个人向境外单位提的研发服务,适用增值税零税率。()
A公司是某市一家中型规模的私营企业,拥有职工800余人。公司在20世纪90年代初创立时,主要给其他企业做OEM(贴牌生产),生产一些通用性强的电子零部件,品种不多,设计定型,新产品也很少。当时公司分设开发、制造、销售等部门,其中制造部是主要的。开发和销售部
以当代社会问题为中心组织的课程是()
下列不是衡量一个国家经济实力的大小的指标的是()。
小胡利用Excel对销售人员的销售额进行统计,销售工作表中已包含每位销售人员对应的产品销量,且产品销售单价为308元,计算每位销售人员销售额的最优操作方法是()
Peoplestirredinthemorningandwentoutintotheyardandreturnedwhennightfell,forsheremainedfrozen.
A、Inawarehouse.B、Inagasstation.C、Inadepartmentstore.D、Inanoffice.C本题的解题关键在于对一些信号词的把握和理解。例如:men’ssuits“男士西装”;hous
最新回复
(
0
)