首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 证明:(1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ε,使得
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 证明:(1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ε,使得
admin
2017-11-13
35
问题
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0,
证明:(1)在开区间(a,b)内g(x)≠0;
(2)在开区间(a,b)内至少存在一点ε,使得
选项
答案
证明 (1)(反证法)假设存在点c∈(a,b),使g(c)=0,则f(x),g(x)分别在区间[a,c],[c,b]上用罗尔定理,得jε
1
∈(a,c),ε
2
∈(c,b),使得gˊ(ε
1
)=gˊ(ε
2
)=0,进而再在区间[ε
1
,ε
2
]上对gˊ(x)再用罗尔定理知了ε
3
∈(ε
1
,ε
2
),使得g〞(ε
3
)=0;但这与题设g〞(x)≠0矛盾 所以在开区间(a,b)内g(x)≠0 (2)在开区间(a,b)内至少存在一点ε,使得[*] 设F(x)=f(x)gˊ(x)-fˊ(x)g(x),易知 F(a)=f(a)gˊ(a)-fˊ(a)g(a)=0, F(b)=f(b)gˊ(b)-fˊ(b)g(b)=0,在[a,b]上对F(x)用罗尔定理, 必存在ε∈(a,b),使fˊ(ε)=0 Fˊ(ε)=Fˊ(x)|
x=ε
=[fˊ(x)gˊ(x)+f(x)g〞(x)-f〞(x)g(x)-fˊ(x)gˊ(x)]|
x=ε
=[f(x)g〞(x)-f〞(x)g(x)]|
x=ε
=f(ε)g〞(ε)-f〞(ε)g(ε)=0 又因为g(ε)≠0,g〞(ε)≠0 所以[*] ε∈(a,b)
解析
转载请注明原文地址:https://jikaoti.com/ti/FEVRFFFM
0
考研数学一
相关试题推荐
设A,B为任意两个不相容的事件且P(A)>0,P(B)>0,则下列结论正确的是().
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得.
设,试求α,β的值.
在密度为1的半球体的底面接上一个相同材料的柱体:一h≤z
设随机变量X~U(0,1),在X=x(0<x<1)下,y~U(0,x).求X,Y的联合密度函数;
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设L为从点A(0,一1,1)到点B(1,0,2)的直线段,则=__________。
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计:试当n=1500时求舍位误差之和的绝对值大于15的概率;
计算,其中Ω为球面x2+y2+z2=2和抛物面z=x2+y2所围成。
设曲线弧L的方程为其周长为a,则曲线积分I=(2xy+3x2+4y2)ds=______.
随机试题
不属影响脉象的生理性因素的是
计算机病毒诊断技术有多种方式方法,以下哪些是病毒的检测方法
西蒙认为,贯穿于管理全过程的管理职能是【】
利用腔内超声检测技术最早在孕几周能显示胎心搏动
劳动卫生学的基本任务主要是
下列选项中属于肢端肥大症病因的是
位于深圳市南山区的某超市保安人员怀疑袁某偷拿了超市的东西,于是拦住袁某不让其离开,袁某不承认,与保安人员发生口角,继而有打斗。保安人员迅速制伏了袁某,随即对其进行殴打,致其轻伤。请回答下列第下列问题。对本案的立案管辖,下列说法正确的是:
根据我国现行规定,作为计算投资项目资本金基数的总投资,是指()。
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+26)T,β=(1,3,-3)T,试讨论当a,b为何值时,(Ⅰ)β不能由α1,α2,α3线性表示;(Ⅱ)β可由α1,α2,α3惟一地线性表示,并求出表
Insomecountrieswhereracialprejudiceisacute,violencehassocometobetakenforgrantedasameansofsolvingdifferenc
最新回复
(
0
)