首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式 。 (1)求导数f(x); (2)证明:当x≥0时,不等式e-x≤f(x)≤1成立.
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式 。 (1)求导数f(x); (2)证明:当x≥0时,不等式e-x≤f(x)≤1成立.
admin
2019-08-01
22
问题
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式
。
(1)求导数f(x);
(2)证明:当x≥0时,不等式e
-x
≤f(x)≤1成立.
选项
答案
[详解1](1)根据题设,有 (x+1)f’(x)+(x+1)f(x)-∫
0
x
f(x)dt=0, 上式两边对x求导,得 (x+1)f"(x)=-(x+2)f’(x), 即[*]。 两边积分,得 lnf’(x)=-x+ln(x+1)+lnC, 即有[*]。 在题设等式中令x=0,得f’(0)+f(0)=0,又f(0)=1,于是f’(0)=-1,代入f’(x)的 表达式,得C=-1,故有[*] (2)当x≥0时,f’(x)<0,即f(x)单调减少,又f(0)=1,所以 f(x)≤f(0)=1. 设ψ(x)=f(x)-e
-x
,则ψ(0)=0,ψ’(x)=f’(x)+e
x
=[*]。 当x≥0时,ψ’(x)≥0,即ψ(x)单调增加,因而ψ(x)≥ψ(0)=0,即有 f(x)≥e
-x
. 综上所述,当x≥0时,成立不等式e
-x
≤f(x)≤1. [详解2](1)解法同详解1. (2)由于f(x)=f(0)+∫
0
x
f’(t)dt=[*],由于当t≥0时,[*],于是由定积分的性质得 [*], 因此,当x≥0时,有e
-x
≤f(x)≤1.
解析
[分析] 含有变限的定积分问题,一般都是先求导,引出一微分方程.本题若直接求导不能消去积分,因此应先乘以x+1,再求导.(2)中不等式的证明需要利用(1)中的结果,引进适当的辅助函数后,用单调性即可完成证明.
[评注1]将方程
化为(1+x)f’(x)+(1+x)f(x)-∫
0
x
f(t)dt=0的目的是通过求导能消去变限积分∫
0
x
f(t)dt,应注意掌握这种技巧.
[评注2] 如果已知f’(x)的表达式或具有某种性质,但不能通过不定积分求出f(x) 的表达式,则可通过变限积分建立f(x)与f’(x)之间的联系,即有f(x)=f(a)+∫
a
x
f’(t)dx.
转载请注明原文地址:https://jikaoti.com/ti/FBERFFFM
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)-2ex|≤(x-1)2,研究函数f(x)在x=1处的可导性.
设A=,问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解.
求曲线y=3-|x2-1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
设x3-3xy+y3=3确定隐函数y=y(x),求y=y(x)的极值.
假定所涉及的反常积分(广义积分)收敛,证明:∫-∞+∞=∫-∞+∞f(x)dx.(*)
求下列不定积分:(Ⅰ)∫arcsinx.arccosxdx;(Ⅱ)∫x2sin2xdx;(Ⅲ)
(10年)一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆.现将贮油罐平激.当油罐中油面高度为时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
(2000年)设E为4阶单位矩阵,且B-(E+A)-1(E-A).则(E+B)-1=_______.
随机试题
设y=exsinx,则y"’=()
企业采用公允价值模式对投资件房地产进行后续计量,下列说法l{|错误的是()。
二十世纪初,将日本普通学校音乐教育的经验带回中国的爱国知识分子有()。
根据下列材料回答问题。2011年年底,全国拥有水上运输船舶17.92万艘,比上年年末增长0.5%;净载重量21264.32万吨,增长17.9%;平均净载重量增长17.3%;集装箱箱位147.52万TEU,增长11.4%;船舶功率5949.66万千瓦,增长
A、 B、 C、 D、 D
Inthefollowingtext,somesentenceshavebeenremoved.ForQuestions1~5,choosethemostsuitableonefromthelistA~Gtofi
现有一个已经建好的“按雇员姓名查询”窗体,如下图所示运行该窗体后,在文本框中输入要查询雇员的姓名,当按下“查询”按钮时,运行一个名是“按雇员姓名查询”的查询,在查询显示出所查雇员的雇员ID、姓名和职称等三个字段。若窗体中的文本框名称为tName,设计“
【21】【38】
Whatdoesthemanaskthewomantodo?
A、Inexpensiveandwelldecorated.B、Expensiveandluxurious.C、Inexpensiveandhumble.D、Expensivebutworthwhile.D由选项预测本题可能考查某
最新回复
(
0
)