首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
admin
2021-11-09
44
问题
设有向量组(Ⅰ):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值时,向量组(Ⅰ)与(Ⅱ)不等价?
选项
答案
方法1:由于行列式|α
1
,α
2
,α
3
|=a+1,故当a≠-1时,秩[α
1
,α
2
,α
3
]=3.方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)有解(且有唯一解),所以向量组(Ⅱ)可由向量组(Ⅰ)线性表示;又由行列式|β
1
,β
2
,β
3
|=6≠0,同理可知向量组(Ⅰ)可由(Ⅱ)线性表示.故当a≠-1时.(Ⅰ)与(Ⅱ)等价.当a=1时,由于秩[α
1
,α
2
,α
3
]≠秩[α
1
,α
2
,α
3
┆β
1
],故方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
无解,即β
1
不能由向量组(Ⅰ)线性表示,所以(Ⅰ)与(Ⅱ)不等价. 方法2:若(Ⅰ)与(Ⅱ)等价,则秩(Ⅰ)=秩(Ⅱ),而秩(Ⅱ)=3,故秩(Ⅰ)=3,[*]|α
1
,α
2
,α
3
|=a+1≠0,[*]a≠-1;反之,若a≠-1,则(Ⅰ)和(Ⅱ)都是线性无关组,而α
1
,α
2
,α
3
,β
i
线性相关(4个3维向量必线性相关),[*]β
i
可由α
1
,α
2
,α
3
线性表示(i=1,2,3),同理知α
j
可由β
1
,β
2
,β
3
线性表示(j=1,2,3),故(Ⅰ)与(Ⅱ)等价.综上可知,(Ⅰ)与(Ⅱ)等价[*]a≠-1.
解析
转载请注明原文地址:https://jikaoti.com/ti/F1lRFFFM
0
考研数学二
相关试题推荐
设f(χ)=,则χ=0为f(χ)的_______间断点.
设函数y=y(χ)由方程eχ+y+cos(χy)=0确定,则=_______.
设f(χ)二阶连续可导,且f(χ)-4∫0χtf(χ-t)dt=eχ,求f(χ).
求微分方程y′-2χy=。的满足初始条件y(0)=1的特解.
设二阶常系数齐次线性微分方程以y1=e2χ,y2=2e-χ-3e2χ为特解,求该微分方程.
过点P(1,0)作曲线的切线,求:该切线与曲线及x轴围成的平面图形的面积;
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.确定a,使S1+S2达到最小,并求出最小值。
设f(x)连续,且∫0xtf(x+t)dt=lnx+1,已知f(2)=1/2,求积分12f(x)dx的值。
下列命题中:①若f(x)=A,g(x)不存在,则f(x)g(x)不存在。②f(x),g(x)分别是x-a的n阶与m阶无穷小,若n﹥m,则是x-a的n-m阶无穷小。③若f(x)在x=x0处存在左右导数且f﹢’(x0)≠f﹣’(x0),则f(x)在x
(2010年试题,17)(I)比较的大小,说明理由.(Ⅱ)设求极限
随机试题
下列关于劳动争议的基本特殊描述不正确的是()。
设y=y(z)满足exy+sin(x2y)=y3,则y’(0)=_____________.
Morethanthirtypeopleare______inthisevent.
________.
委托代理人选定的转代理人亦即复代理人为()
患儿,男性,8个月,舌系带溃烂长肿物1个月,影响进食与舌的活动,求治。检查:下乳切牙萌出,边缘锐利,舌系带处可见1.0cm×0.8cm大小的溃疡,溃疡增殖,边缘高起外翻,表面有灰白色假膜,触较韧。此患儿可能诊断为
患者,男,50岁,2012年初患胃癌。2014年旧病复发.日见恶化,痛苦万分。为此.患者在疼痛间歇完全清醒时,屡次要求医务人员让其“安乐死”。他的妻子、儿子,因不忍见他受病痛折磨.便根据其要求写了让他“安乐死”的申请书.并签了名。以下说法错误的是
机动车辆保险的基本险包括( )。Ⅰ.车辆损失险Ⅱ.车上责任险Ⅲ.第三者责任险Ⅳ.车辆停驶损失险
小王根据某领导要求,要把一次会议记录的代表发言编发一期《会议简报札》,按照有关规定小王可采取的正确做法是()。
按照人的自我的发展历程、实现人生价值和精神自由的高低程度,人生境界可分为四个层次,即欲求境界、求知境界、道德境界和审美境界。最低的境界为“欲求境界”。人生之初,在这种境界中只知道满足个人生存所必需的最低欲望,故以“欲求”称之,当人有了自我意识,并
最新回复
(
0
)