(2001年)设随机变量X和Y的联合分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X-Y|的概率密度p(u)。

admin2018-04-23  34

问题 (2001年)设随机变量X和Y的联合分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X-Y|的概率密度p(u)。

选项

答案由题设条件X和Y的联合分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,则X和Y的联合密度为: [*] 由分布函数的定义:F(u)=P{U≤u}=P{|X-Y|≤u}。 (1)当u<0时,F(u)=0(因为|X-Y|是非负的,所以小于0是不可能事件) (2)当u≥2时,F(u)=1(因为X和Y最大为3,X和Y最小为1,所以|X-Y|最大也就只能为2,所以|X-Y|≤2是必然事件,概率为1)。 (3)当0≤u<2时,F(u)=P{U≤u}相当于阴影部分所占的概率大小。如图所示: [*] F(u)=P{U≤u}=P{|X-Y|≤u} =[*][4-(2-u)2] =1-[*](2-u)2, (二维均匀分布中各部分所占的概率,相当于用这部分的面积除以总面积,这里阴影部分面积是用总面积减去两个三角形的面积)。 于是随机变量U的概率密度为: [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/EsKRFFFM
0

最新回复(0)