设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.

admin2022-07-21  65

问题 设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.

选项

答案(1)由全微分方程的充要条件得,f(x)满足 [*] 即f’’(x)+f(x)=x2,解得 f(x)=C1cosx+C2sinx+x2-2 再由f(0)=0,f’(0)=1可得C1=2,C2=1.从而 f(x)=2cosx+sinx+x2-2 (2)将f(x)的表达式代入原方程中,得 [xy2-(2cosx+sinx)y+2y]dx+(-2sinx+cosx+2x+x2y)dy=0 由积分法得 u(x,y)=∫(0,0)(x,y)[xy2-(2cosx+sinx)y+2y]dx+(-2sinx+cosx+2x+x2y)dy =∫0y(-2sinx+cosx+2x+x2y)dy =-2ysinx+ycosx+2xy+[*]x2y2 所以原方程的通解为-2ysinx+ycosx+2xy+[*]x2y2=C.

解析
转载请注明原文地址:https://jikaoti.com/ti/EmhRFFFM
0

最新回复(0)