首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2003年试题,十)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ使(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2
(2003年试题,十)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ使(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2
admin
2019-03-21
47
问题
(2003年试题,十)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.f
’
(x)>0.若极限
存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ使
(3)在(a,b)内存在与(2)中ξ相异的点η,使f
’
(η)(b
2
-a
2
)=
选项
答案
(1)由题设,[*]存在,因此[*]已知f(x)在[a,b]上连续,因此f(a)=0,又由f
’
(x)>0知f(x)在(a,b)内严格单调递增,所以f(x)>f(a)=0,即f(x)>0,x∈(a,b),引入辅助函数F(x)=x
2
及G(x)=[*](2)则G
’
(x)=f(x)>0,故F(x)与G(x)满足应用柯西中值定理的条件,则存在点ξ∈(a,b),使得[*]即[*](3)由前述知道f(a)=0,因而f(ξ)=f(ξ)一f(a),其中ξ∈(a,b),在[a,ξ)上应用拉格朗日中值定理,知存在η∈(a,ξ),使f(ξ)=f
’
(η)(ξ—a)则由(2)已知结论,有[*]此即f
’
(η)(b
2
一a
2
)=[*]
解析
中值定理是考研中的重点,构造辅助函数是解与中值定理有关的证明题的有效方法,考生应重点掌握.
转载请注明原文地址:https://jikaoti.com/ti/EmLRFFFM
0
考研数学二
相关试题推荐
设函数f(x)在x=x0处存在f’+(x0)与f’-(x0),但f’+(x0)≠f’-(x0),说明这一事实的几何意义.
已知函数f(x,y,z)=x3y2z及方程x+y+z-3+e-3=e-(x+y+z),(*)(Ⅰ)如果x=x(y,z)是由方程(*)确定的隐函数满足x(1,1)=1,又u=f(x(y,z),y,z),求;(Ⅱ)如果z=z(x,
证明:,其中p>0.
设函数f(x)在区间[a,b]上连续,且恒大于零,证明:
设A是n阶实反对称矩阵,证明(E-A)(E+A)-1是正交矩阵.
设A,B都是n阶矩阵,并且A是可逆矩阵.证明:矩阵方程AX=B和XA=B的解相同AB=BA.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
设A=(α1,α2,α3),B=(β1,β2,β3)都是3阶矩阵.规定3阶矩阵证明C可逆的充分必要条件是A,B都可逆.
(2012年试题,二)设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第1行与第2行得矩阵B,则|BA*|__________.
(2004年试题,三(2))设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=-x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0)上的表达式;(Ⅱ)问k为何值时f(x)在x=0处可
随机试题
A.商标名B.中枢镇静催眠作用C.通用名D.H1阻断剂E.H2阻断剂医生处方中马来酸氯苯那敏的名称属于是
全口义齿人工牙排列要有平衡的主要原因是
患者,男,60岁,来院咨询减肥方法。体格检查:身高170cm,体重82kg,膝关节有陈旧疾患,无法负重。护士建议其最好的运动方式是
按摄影站的位置或传感器平台划分,摄影测量可分为()。
下列关于会计科目属性说法错误的是()。
由于承包单位以外的原因所造成的进度拖延称为()。[2005年真题]
进一步审计程序是指注册会计师针对评估的各类交易、账户余额和披露认定层次重大错报风险实施的审计程序。以下关于进一步审计程序的说法中,不正确的是()。
关于品德与道德关系的说法中,错误的是()。
Here_______thebus.
Forthispart,youareallowed30minutestowriteanessaycommentingonthesaying"Misfortuneratherthanprosperityhelpspe
最新回复
(
0
)