首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是在区间[1,+∞)上单调减少且非负的连续函数, 证明:(1)存在;(2)反常积分∫1+∞f(x)dx与无穷级数同敛散.
设f(x)是在区间[1,+∞)上单调减少且非负的连续函数, 证明:(1)存在;(2)反常积分∫1+∞f(x)dx与无穷级数同敛散.
admin
2016-09-13
58
问题
设f(x)是在区间[1,+∞)上单调减少且非负的连续函数,
证明:(1)
存在;(2)反常积分∫
1
+∞
f(x)dx与无穷级数
同敛散.
选项
答案
(1)由f(x)单调减少,故当k≤x≤k+1时, f(k+1)≤f(x)≤f(k). 两边从k到k+1积分,得 ∫
k
k+1
f(k+1)dx≤∫
k
k+1
f(x)dx≤∫
k
k+1
f(k)dx, 即f(k+1)≤∫
k
k+1
f(x)dx≤f(k). [*] 即{a
n
}有下界.又 a
n+1
-a
n
=f(n+1)-∫
n
n+1
f(x)dx≤0,即数列{a
n
}单调减少,所以[*]存在. (2)由于f(x)非负,所以∫
1
x
f(t)dt为x的单调增加函数.当n≤x≤n+1时, ∫
1
n
f(t)dt≤∫
1
x
f(t)dt≤∫
1
n+1
f(t)dt, 所以 ∫
1
+∞
f(x)dx收敛<=>[*]f(x)dx存在. 由(1)知[*]存在,所以 [*]f(k)存在<=>[*]f(x)dx存在. 从而推知 ∫
1
+∞
f(x)dx<=>[*]f(n)收敛.
解析
转载请注明原文地址:https://jikaoti.com/ti/EixRFFFM
0
考研数学三
相关试题推荐
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
将函数分别展开成正弦级数和余弦级数.
利用定积分的几何意义求出下列积分:
计算空间曲积分为螺线x=cosθ,y=sinθ,z=θ,由A(1,0,0)到B(1,0,2π)的一段.
已知某曲线经过点(1,1),它的切线在纵轴上的截距等于切点的横坐标,求它的方程.
设长方体的各棱与坐标轴平行,已知长方体的两个顶点的坐标,试写出其余六个顶点的坐标:(1)(1,1,2),(3,4,5);(2)(4,3,0),(1,6,-4).
求下列向量场A沿定向闭曲线Γ的环流量:(1)A=-yi+xj+ck(c为常数),Γ为圆周x2+y2=1,z=0,从z轴正向看去,Γ取逆时针方向;(2)A=3yi-xzj+yz2k,Γ为圆周x2+y2=4,z=1,从z轴正向看去,Γ取逆时针方向.
(1)如果点P(x,y)以不同的方式趋于Po(xo,yo)时,f(x,y)趋于不同的常数,则函数f(x,y)在po(xo,yo)处的二重极限____________.(2)函数f(x,y)在点(xo,yo)连续是函数在该点处可微分的___________
随机试题
患者伤后由烦躁进入昏迷,并出现后一侧瞳孔散大,光反射消失,多见于患者伤后双侧瞳孔不等大,时大时小,伴意识障碍,多见于
甲企业向乙银行借款100万元,以企业现有的以及将有的生产设备、原材料、半成品、产品设定抵押担保,双方签订了书面抵押协议,并到工商行政管理部门办理了抵押登记。借款期限届至,甲企业无力还款,乙银行准备行使抵押权。经查,甲企业仅有的一套设备已经出卖给丙公司,双方
注册建筑师的执业范围,主要包括()。
根据《建设工程工程量清单计价规范》,关于装饰装修工程量计算的说法,正确的是()。[2012年真题]
在工程预付款数额的计算公式中,年度施工天数通常按()计算。
下列做法中,不符合《建筑法》关于承揽工程的规定的是()
某承包商在混凝土重力坝施工过程中,采用分缝分块常规混凝土浇筑方法。由于工期紧,浇筑过程中气温较高,为保证混凝土浇筑质量,承包商积极采取了降低混凝土的入仓温度等措施。在某分部工程施工过程中,发现某一单元工程混凝土强度严重不足,承包商及时组织人员全部
20世纪80年代以来,国际金融市场最重要的创新便是金融衍生品市场的发展。最早出现的是简单的衍生品,如远期、期货、期权、互换等,随后出现了多种复杂产品。20世纪90年代信用衍生品的出现,将金融衍生品市场的发展推向新的阶段。在2007年爆发的美国次贷危机中,信
科技进步是推动经济全球化的()。
带领30人的旅游团在北京游览时,地陪应事先准备好并携带()
最新回复
(
0
)