二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2-4x1x3+8x2x3的矩阵A=_______,规范形是______.

admin2017-10-17  31

问题 二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2-4x1x3+8x2x3的矩阵A=_______,规范形是______.

选项

答案2,6,-4;x12+x22-x32

解析 按定义,二次型矩阵A=.由特征多项式|λE-A|==(λ-6)(λ-2)(λ+4),知矩阵A的特征值是:2,6,-4.
    故正交变换下二次型的标准形是2y21+6y22-4y23.所以规范形是x21+x22-x23
    或,由配方法,有
f=2[x22+2x2(x1+2x3)+(x1+2x3)2]+2x32-4x1x3-2(x1+2x3)2
=2(x2+x1+2x3)2-2x12-12x1x3-6x32
=2(x2+x1+2x3)2-2(x12+6x1x3+9x32)+12x32
=2(x2+x1+2x3)2-2(x1+3x3)2+12x32
亦知规范形是x12+x22-x32
转载请注明原文地址:https://jikaoti.com/ti/E9SRFFFM
0

最新回复(0)