首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组 与方程 x1+2x2+x3=a-1 (Ⅱ) 有公共解,求a的值及所有公共解.
设线性方程组 与方程 x1+2x2+x3=a-1 (Ⅱ) 有公共解,求a的值及所有公共解.
admin
2019-12-26
32
问题
设线性方程组
与方程
x
1
+2x
2
+x
3
=a-1 (Ⅱ)
有公共解,求a的值及所有公共解.
选项
答案
【解法1】 将方程组(I)与(Ⅱ)联立得 [*] 则方程组(Ⅲ)的解便是方程组(I)与(Ⅱ)的公共解.对方程组(Ⅲ)的增广矩阵[*]施行初等行变换: [*] 由于方程组(Ⅲ)有解,故其系数矩阵的秩等于增广矩阵[*]的秩.于是得(a-1)(a-2)=0,即a=1或a=2. 当a=1时, [*] 由此得方程组(Ⅲ)亦即方程组(I)与(Ⅱ)的公共解为 [*] 其中k为任意常数. 当a=2时, [*] 由此知方程组(Ⅲ)亦即方程组(I)与(Ⅱ)的公共解为 x=(0,1,-1)
T
. 【解法2】 先求方程组(I)的解.其系数行列式为 [*] 当a≠1且a≠2时,系数行列式不等于零,于是齐次方程组(I)只有零解.但零向量x=(0,0,0)
T
显然不是方程(Ⅱ)的解(a≠1且a≠2). 当a=1时,对方程组(I)的系数矩阵施行初等行变换: [*] 因此方程组(I)的通解为x=k(-1,0,1)
T
(k为任意常数).而且此解也满足方程(Ⅱ).总之,此时方程组(I)与(Ⅱ)的所有公共解为 [*] 其中k为任意常数. 当a=2时,对方程组(I)的系数矩阵施行初等行变换: [*] 此时方程组(I)的通解为x=k(0,-1,1)
T
(k为任意常数).将此解代入方程(Ⅱ),得k=-1,所以方程组(I)与(Ⅱ)的所有公共解为 [*] 综上,a=1和a=2.
解析
转载请注明原文地址:https://jikaoti.com/ti/DxiRFFFM
0
考研数学三
相关试题推荐
设矩阵A=,E为2阶单位矩阵,矩阵B满足BA=B+2E,则丨B丨=_________.
若随机变量X1,X2,…,Xn相互独立同分布于N(μ2,2),则根据切比雪夫不等式得P{|一μ|≥2)≤__________.
质量为1g的质点受外力作用作直线运动,外力和时间成正比,和质点的运动速度成反比,在t=10s时,速度等于50cm/s.外力为39.2cm/s2,问运动开始1min后的速度是多少?
若曲线y=x3+ax2+bx+1有拐点(一1,0),则b=_________.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设函数f(x)在[0,+∞)内二阶可导,且f(0)=f’(0)=0,并当x>0时满足xf"(x)+3x[f’(x)]2≤1一e-x.证明当x>0时,f(x)<
设f(x)=(Ⅰ)若f(x)处处连续,求a,b的值;(Ⅱ)若a,b不是(Ⅰ)中求出的值时f(x)有何间断点,并指出它的类型.
设f(x)在x=a处的左右导数都存在,则f(x)在x=a处().
已知ξ1,ξ2是方程组(λE一A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量是().
设是f(x)的一个原函数,对于下述两个反常积分(Ⅰ)=∫0+∞x4f’(x)dr,(Ⅱ)=∫0+∞x3f"(x)dx,正确的结论是()
随机试题
大肠的下合穴是小肠的下合穴是
两眉头连线的中点为眶下缘外1/4与内3/4交界处为
甲乙丙三国均为南极地区相关条约缔约国。甲国加入条约前,曾对南极某区域提出过领土要求。乙国在成为条约缔约国后,在南极建立了常年考察站。丙国利用自己靠近南极的地理优势,准备在南极大规模开发旅游。依《南极条约》和相关制度,下列哪一判断是正确的:
为认真贯彻落实习近平总书记在主持中央政治局第十九次集体学习时的重要讲话精神,牢固树立安全发展理念,大力加强公众安全教育,扎实推进安全宣传“五进”工作,进一步增强公众风险防范、安全应急意识和自救互救能力,相关部门制定了《推进安全宣传“五进”工作方案》。下列内
社区的具体形态是多种多样的,()把社区划分成四种类型:流动性社区、村舍式社区、农村社区、城市社区。
对纳税人采取税收保全措施,必须经税务机关向人民法院提出申请后,由人民法院执行。()
下列不属于家庭成熟期财务状况的是()。
某银行会计花2000元钱购入5万元的假币,然后利用职务之便,用假币换取等额真币,其行为涉嫌构成()。
中国烹饪与法国烹饪、土耳其烹饪被认为是世界三大烹饪流派的代表。()
培训管理的首要制度是()
最新回复
(
0
)