首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知ξ1=(1,1,0,0)T,ξ2=(1,0,1,0)T,ξ3=(1,0,0,1)T是齐次线性方程组(I)的基础解系,η1=(0,0,1,1)T,η2=(0,1,0,1)T是齐次线性方程组(Ⅱ)的基础解系,求方程组(I)与(Ⅱ)的公共解.
已知ξ1=(1,1,0,0)T,ξ2=(1,0,1,0)T,ξ3=(1,0,0,1)T是齐次线性方程组(I)的基础解系,η1=(0,0,1,1)T,η2=(0,1,0,1)T是齐次线性方程组(Ⅱ)的基础解系,求方程组(I)与(Ⅱ)的公共解.
admin
2017-07-26
39
问题
已知ξ
1
=(1,1,0,0)
T
,ξ
2
=(1,0,1,0)
T
,ξ
3
=(1,0,0,1)
T
是齐次线性方程组(I)的基础解系,η
1
=(0,0,1,1)
T
,η
2
=(0,1,0,1)
T
是齐次线性方程组(Ⅱ)的基础解系,求方程组(I)与(Ⅱ)的公共解.
选项
答案
方程组(I)与(Ⅱ)的通解分别是 k
1
α
1
+k
2
α
2
+k
3
α
3
与l
1
η
1
+l
2
η
2
. 若有不全为零的常数a
1
,a
2
,a
3
,b
1
,b
2
,使 a
1
ξ
1
+a
2
ξ
2
+a
3
ξ
3
=b
1
η
1
+b
2
η
2
, 则b
1
η
1
+b
2
η
2
就是方程组(I)与(II)的非零公共解, 对于a
1
ξ
1
+a
2
ξ
2
+a
3
ξ
3
一b
1
η
1
+b
2
η
2
=0,对系数矩阵作初等行变换,有 [*] 通解为t(1,一1,0,一1,1)
T
,即 a
1
=t, a
2
=一t, a
3
=0, b
1
=一t, b
2
=t. 所以方程组(I)与(Ⅱ)的公共解为 t(ξ
1
一ξ
2
)=(0,t,一t,0)
T
.
解析
转载请注明原文地址:https://jikaoti.com/ti/DlSRFFFM
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是来自总体X的简单随机样本,X的概率密度为是未知参数.求A的矩估计量;
设随机变量X1和X2相互独立且都服从参数为λ的指数分布,则下列随机变量中服从参数为2λ的指数分布的是
证明下列命题:设f(x)在[0,1]连续,在(0,1)二阶可导且f(0)=f(1)=0,f’’(x)0(x∈(0,1)).
曲线在点(1,1,3)处的切线方程为_____.
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
如下图,连续函数y=f(x)在区间[﹣3,﹣2],[2,3]上图形分别是直径为1的上、下半圆周,在区间[﹣2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设F(x)=
设函数f(x)在点x。处有连续的二阶导数,证明
设f〞(x)存在,求下列函数y的二阶导数d2y/dx2:(1)y=f(e-x);(2)y=ln[f(x)].
设随机变量X1,X2,…,Xn,…相互独立,,则当n→∞时Yn以正态分布为极限分布,只要X1,…,Xn,…
已知y—y(x)是微分方程(x2+y2)dy一dy的任意解,并在y=y(x)的定义域内取x0,记y0一y(x0)。证明:均存在.
随机试题
PowerPoint2010中的母版不包括()
长期留置导尿患者需定期更换导尿管的目的是
患者,女,58岁,不慎从楼梯上跌落后发生左侧第5、6、7肋骨多处骨折,其呼吸时患处可能出现
图示为单跨双层框架,因柱抗弯刚度不同,梁跨中弯矩最小的位置是()。
实现计算机网络化后的最大好处是:
采用半机械化吊装方法将某高塔安装在一较高位置的基础上,但安装公司的桅杆较矮,此时宜采用的吊装方法为( )。
钢管桩的制造设备较为简单,下沉速度也较同直径的其他管桩快,但()。
历史唯物主义认为,文明是指人类所创造的()。
A、相似且合同B、相似不合同C、合同不相似D、不合同也不相似C由|λE-A|=0得A的特征值为1,3,一5,由|λE-B|=0得B的特征值为1,1,一1,所以A与B合同但不相似,选(C).
一个国家的妇女通过她们的生活方式塑造了这个国家的道德、宗教和政治。
最新回复
(
0
)