首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
admin
2019-03-12
52
问题
设4维向量组α
1
=(1+a,1,1,1)
T
,α
2
=(2,2+a,2,2)
T
,α
3
=(3,3,3+a,3)
T
,α
4
=(4,4,4,4+a)
T
,问a为何值时,α
1
,α
2
,α
3
,α
4
线性相关?当α
1
,α
2
,α
3
,α
4
线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.
选项
答案
(1)记A=(α
1
,α
2
,α
3
,α
4
),则 [*] 那么,当a=0或a=-10时,|A|=0,向量组α
1
,α
2
,α
3
,α
4
线性相关. 当a=0时,α
1
为向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且 α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a=-10时,对A作初等行变换,有 [*] 由于β
2
,β
3
,β
4
为β
1
,β
2
,β
3
,β
4
的一个极大线性无关组,且β
1
=-β
2
-β
3
-β
4
,所以α
2
,α
3
,α
4
为向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=-α
2
-α
3
-α
4
. (2)记A=(α
1
,α
2
,α
3
,α
4
),对A作初等行变换,有 [*] 当a=0时,秩r(a)=1,因而α
1
,α
2
,α
3
,α
4
线性相关.此时α
1
是向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a≠0时,对矩阵B作初等变换有 [*] 如果a≠-10,则秩r(C)=4,α
1
,α
2
,α
3
,α
4
线性无关. 如果a=-10,则秩r(C)=3,从而r(a)=3,α
1
,α
2
,α
3
,α
4
线性相关. 由于γ
2
,γ
3
,γ
4
是γ
1
,γ
2
,γ
3
,γ
4
的一个极大线性无关组且γ
1
=-γ
2
-γ
3
-γ
4
,所以α
2
,α
3
,α
4
是α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=-α
2
-α
3
-α
4
.
解析
转载请注明原文地址:https://jikaoti.com/ti/DlBRFFFM
0
考研数学三
相关试题推荐
设函数f(x)=F(x)=∫—1xf(t)dt,则
计算二重积分ye—(x+y)dσ,其中D是由直线y=x与y轴在第一象限围成的区域。
设f(x)=试确定常数a,使f(x)在x=0处右连续.
求函数y=(x∈(0,+∞))的单调区间与极值点,凹凸区间与拐点及渐近线.
已知二维随机变量(X,Y)的概率分布为又P{X=1}=0.5,且X与Y不相关.随机变量X+Y与X—Y是否相关,是否独立?
二阶微分方程y"=e2y满足条件y(0)=0,y’(0)=1的特解是y=________.
设三阶矩阵A的特征值为-1,-1,3,其对应的线性无关的特征向量为α1,α2,α3,令P=(2α1+α2,α1-α2,2α3),则P-1A*P=().
设二次型f(x1,x2,x3)=x12+x22+x32-2x1x2-2x1x3+2ax2x3(a
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+.
微分方程y"+y=x2+1+sinx的特解形式可设为
随机试题
启动子或启动序列结构与功能的特点为
乙公司欠甲公司30万元,同时甲公司须在2000年9月20日清偿对乙公司的20万元货款。甲公司在同年9月18日与丙公司签订书面协议,转让其对乙公司的30万元债权。同年9月24日,乙公司接到甲公司关于转让债权的通知后,便主张20万元的抵销权。下列说法哪些是正确
下列说法中正确的有()。
以抵押担保方式申请个人住房装修贷款的,贷款期限最长为()
商业银行建立的与全面风险管理相适应的管理信息系统体系,应具有(),及时反映风险假设变化对风险评估和资本评估的影响。
“究天人之际,通古今之变,成一家之言”是()的名言。
人类从婴儿到青春期的认识发展阶段中,开始具有抽象逻辑思维是在()。
我国新型工业化道路中发展科学技术的主要方针政策是
Howmuchdoesthegascost?
Althoughtheenjoymentofcolorisuniversalandcolortheoryhasallkindsofnamestoit,colorremainsaveryemotionalands
最新回复
(
0
)