首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点x处的增量△y=,且y(0)=π,则y(1)=______.
当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点x处的增量△y=,且y(0)=π,则y(1)=______.
admin
2018-06-27
47
问题
当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点x处的增量△y=
,且y(0)=π,则y(1)=______.
选项
答案
[*]
解析
首先尝试从△y的表达式直接求y(1).为此,设x
0
=0,△x=1,于是△y=y(x
0
+△x)-y(x
0
)=y(1)-y(0)=y(1)-π,代入△y的表达式即得
y(1)-π=π+α
y(1)=2π+α.
由于仅仅知道当△x→0时α是比△x较高阶的无穷小,而不知道α的具体表达式,因而从上式无法求出y(1).
由此可见,为了求出y(1)必须去掉△y的表达式中包含的α.利用函数的增量△y与其微分dy的关系可知,函数y(x)在任意点x处的微分
这是一个可分离变量方程,它满足初始条件y|
x=0
=π的特解正是本题中的函数y(x),解出y(x)即可得到y(1).
将方程
分离变量,得
求积分可得
由初始条件y(0)=π可确定
转载请注明原文地址:https://jikaoti.com/ti/DjdRFFFM
0
考研数学二
相关试题推荐
设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.(1)求A的属于特征值3的特征向量.(2)求矩阵A.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,X1,X2是分别属于λ1和λ2的特征向量,试证明X1+X2不是A的特征向量.
求微分方程y"+4y’+4y=e-2x的通解.
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征向量;
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.求秩r(A+E).
随机试题
JK活动的理论基础是
Onthesurface,AIDSappearstohavebarelytouchedAsiasofar,andthefewcasesreportedinvolvemainlyforeigners,femalean
枕骨大孔疝不同于小脑幕切迹疝的临床表现是
某工业项目工程概算中的建筑安装工程费为6000万元人民币,设备购置费为3500万元,联合试运转费为200万元,某监理单位与建设单位签订该项目施工委托监理合同,双方约定监理费浮动幅度为下浮15%。已知专业调整系数为0.9,工程复杂程度调整系数为1.0,高
关于基金申购费,以下表述错误的是()。[2016年11月真题]
甲、乙、丙成立一合伙企业,丁购买合伙企业电器应支付价款10万元,甲因自己买房欠丁5万元,丁应当( )。
糖尿病患者使用胰岛素治疗时,大都采用肌肉注射而不是口服,其根本原因是()。
1.人最需要的是灵魂,城市也是如此。灵魂的塑造,说到底是一种精神的塑造。因此,城市精神,就是城市灵魂的呈现。它所书写的,应该是城市的底蕴、城市的韵味、城市的品位,也是一个城市对于自己所肩负的历史使命的高度自觉。世界之大,城市之多,不计其数,不过,
《中华人民共和国治安管理处罚法》规定,人民警察办理治安案件有刑讯逼供行为的,根据具体情况可能会实行的处理方法是,依法()
(47)是应用系统建设过程中凸显出来的最大特点。在需求获取过程中因需求不完整、不清晰的情况,导致后续开发改动频繁,容易引发大量的质量缺陷及隐患。
最新回复
(
0
)