设曲线积分∫Lyf(x)dx+[f(x)一x2]dy与路径无关,其中f(x)可导’且f(0)=1,求∫01xf(x)dx.

admin2020-09-23  14

问题 设曲线积分∫Lyf(x)dx+[f(x)一x2]dy与路径无关,其中f(x)可导’且f(0)=1,求∫01xf(x)dx.

选项

答案因为曲线积分∫Lyf(x)dx+[f(x)一x2]dy与路径无关,所以[*]即f’(x)一2x=f(x), 于是f’(x)一f(x)=2x,[f’(x)一f(x)]e-x=2xe-x,即[f(x)e-x]’=2xe-x, 等式两边对x积分,得 f(x)e-x=∫2xe-xdx=一2xe-x一2e-x+C, 由f(0)=1,得C=3,所以f(x)=3ex一2x一2. 故∫01xf(x)dx=∫01(3xex一2x2一2x)dx=[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/DQ9RFFFM
0

最新回复(0)