首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)为n阶方阵,证明:对任意的n维列向量X.都有XTAX=0→A为反对称矩阵.
设A=(aij)为n阶方阵,证明:对任意的n维列向量X.都有XTAX=0→A为反对称矩阵.
admin
2018-07-31
21
问题
设A=(a
ij
)为n阶方阵,证明:对任意的n维列向量X.都有X
T
AX=0→A为反对称矩阵.
选项
答案
必要性:取X=ε
j
=(0,…,0,1,0,…,0)
T
(第j个分量为1,其余分量全为零的n维列向量),则由0=ε
j
T
Aε
j
=a
jj
,及i≠j时,有0=(ε
i
+ε
j
)
T
A(ε
i
+ε
j
)=ε
i
T
Aε
i
+ε
i
T
Aε
j
+ε
j
T
Aε
i
+ε
j
T
Aε
j
=0+a
ij
+a
ji
+0=a
ij
+a
ji
,可知A为反对称矩阵.充分性:若A
T
=一A,则X
T
A
T
X=一X
T
AX,又X
T
A
T
X为1阶方阵.其转置不变,因而有X
T
A
T
X=(X
T
A
T
X)
T
=X
T
AX→X
T
AX=一X
T
AX→2X
T
AX=0→X
T
AX=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/DP2RFFFM
0
考研数学一
相关试题推荐
设S(x)=∫0x|cost|dt.(1)证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1);(2)求.
设f(x)在[0,a](a>0)上非负、二阶可导,且f(0)=0,f"(x)>0,为y=f(x),y=0,x=a围成区域的形心,证明:.
某种食品防腐剂含量X服从N(μ,σ2)分布,从总体中任取20件产品,测得其防腐剂平均含量为=10.2,标准差为s=0.5099,问可否认为该厂生产的产品防腐剂含量显著大于10(其中显著性水平为α=0.05)?
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4).证明:当n充分大时,随机变量Z=近似服从正态分布,并指出其分布参数.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为一.(1)求E(Z),D(Z);(2)求ρXY;(3)X,Z是否相互独立?为什么?
某商店经销某种商品,每周进货数量X与顾客对该种商品的需求量Y之间是相互独立的,且都服从[10,20]上的均匀分布.商店每出售一单位商品可获利1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利500元,计算此商店经销该种商品每周所
求正交变换化二次型一2x1x2+2x1x3—2x2x3为标准形,并写出所用正交变换.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
设A、B为同阶方阵,则A与B相似的充分条件是()
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
随机试题
A.造血干细胞增生和分化异常B.遗传性Hb合成异常C.慢性失血D.获得性红细胞膜缺陷E.遗传性红细胞膜缺陷再生障碍性贫血
治疗噤口痢,虚实皆可选用的药物是
县级以上人民代表有权依法向本级人大提出属于其职权范围内的议案。根据现行《宪法》和法律,这类议案至少应当经过下列哪些程序方可通过?
回弹弯沉测试中,应对测试值进行修正,其中包括()。
下列关于世界城镇化进程的表述,哪项是错误的()
材料一:莎士比亚的戏剧《哈姆雷特》中的一段独白:“人是一件多了不起的杰作!多么高贵的理性!多么伟大的力量!多么优美的仪表!多么文雅的举动!在行动上多么像一个天使!在智慧上多么像一个天神!宇宙的精华!万物的灵长!”材料二:“近五年来,中
借助网络的力量,信息的传播速度前所未有地加快,再加上“好事不出门,坏事传千里”的千古定律,企业的负面信息总会被无限放大。这对正面临市场考验的卫浴企业来说,极有可能会成为压死骆驼的最后一根稻草。_______的卫浴市场,企业_______才是应对关键。
持有货币的机会成本是()。
Onlinedatinghasjustbeenrevealedtobeoneofthemostcommonwaystostartarelationship.Butnewresearchrevealsthatth
Thispassagemainlydiscusses______.Thepassagetellsusthat______.
最新回复
(
0
)