首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α=[1,1,1]T是二次型+2x1x2+2bx1x3+2x2x3矩阵的特征向量.判断二次型是否正定,并求下列齐次方程组的通解:
已知α=[1,1,1]T是二次型+2x1x2+2bx1x3+2x2x3矩阵的特征向量.判断二次型是否正定,并求下列齐次方程组的通解:
admin
2020-02-27
58
问题
已知α=[1,1,1]
T
是二次型
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
矩阵的特征向量.判断二次型是否正定,并求下列齐次方程组的通解:
选项
答案
二次型矩阵是 [*] 设α是属于特征值λ
0
的特征向量,即A
1
α=λ
0
α,或 [*] 由此可得 [*] 易解出 λ
0
=3,b=0,a=2. 对于[*],由于|A
1
|=0,所以f不是正定二次型. 将a=2,b=0代入方程组,对系数矩阵作初等行变换化为行阶梯形矩阵: [*] 当c=6时,对B进一步用初等行变换化为含最高阶单位矩阵的矩阵,得到 [*] 则A
2
X=0的一个基础解系含2个解向量: α
1
=[一9,19,一7,1,0]
T
, α
2
=[2,一7,2,0,1]
T
, 其通解为X=k
1
α
1
+k
2
α
2
,k
1
,k
2
为任意常数. 当c≠6即c-6≠0时,矩阵B用初等行变换进一步可化为含最高阶单位矩阵的矩阵: [*] 这时方程组A
2
X=0的基础解系只含一个解向量: [一(3c一10)/14,一(23-2c)/7,0,一(c一8)/7,7]
T
. 为方便计,取 α
3
=[一(3c一10)/2,一(23—2c),0,一(c一8),49]
T
=[5—3c/2,2c一23,0,(8一c),49]
T
. 故当c≠6时,方程组A
2
X=0的通解为k
3
α
3
,其中k
3
为任意常数.
解析
写出二次型矩阵A,由题设条件列出方程易求得a、b和α的特征值λ
0
.然后再将所给齐次方程组的系数矩阵用初等行变换化为含最高阶单位矩阵的矩阵,用基础解系的简便求法即可写出其基础解系及通解.
转载请注明原文地址:https://jikaoti.com/ti/CziRFFFM
0
考研数学三
相关试题推荐
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解。
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1=
设A是m×n矩阵,Aχ=0是非齐次线性方程组Aχ=b所对应的齐次线性方程组,则【】
设X1,X2,…,Xn,…是独立同分布的随机变量序列,且均服从参数为λ(λ>1)的指数分布,记Φ(x)为标准正态分布函数,则().
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于________。
设,则当x→0时,两个无穷小的关系是().
微分方程y’+ytanx=cosx的通解为y=_____________________。
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,则dσ=()
设相互独立的两个随机变量X和Y均服从标准正态分布,则随机变量X—Y的概率密度函数的最大值等于___________。
设随机变量序列X1,X2,…,Xn,…相互独立,则根据辛钦大数定律,Xi依概率收敛于其数学期望,只要{Xn:n≥1}()
随机试题
After______thenumbersineverypossiblecombination,wefinallyhitonasolution.
患者,女,45岁。在针刺中,突然出现头晕目眩,多汗,四肢发冷,脉沉细。应首选的处理方法是
某一电路的滤波特性如图所示,由此可知,该电路具有()。
保荐机构应当自持续督导工作结束后()个工作日内向()报送“保荐总结报告书”。
当前教育的核心问题是()。
国债是指()为债务人的身份,采取信用方式,通过在国内外发行债券所形成的债务。
①每次经济危机之后,都会带来一个巨大的创新。②“中国制造”走向了世界,为中国的经济带来了一个持续高速的增长。③但是,在国际金融危机的情况下,中国的自主创新能力确实受到了严峻的考验。④中国不得不创新,如果不创断的话,依然是中国制造。⑤正是危机的不断刺
治疗心力衰竭最常用的药物是
有如下程序段:inti=1;intj=4;intmain(){inti=8,j=i;cout
A、Sheadviseshimtowritedowngoodmarks.B、SheadviseshimtowriteinEnglish.C、Sheadviseshimtogetaprofessionalguide
最新回复
(
0
)