首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α=[1,1,1]T是二次型+2x1x2+2bx1x3+2x2x3矩阵的特征向量.判断二次型是否正定,并求下列齐次方程组的通解:
已知α=[1,1,1]T是二次型+2x1x2+2bx1x3+2x2x3矩阵的特征向量.判断二次型是否正定,并求下列齐次方程组的通解:
admin
2020-02-27
60
问题
已知α=[1,1,1]
T
是二次型
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
矩阵的特征向量.判断二次型是否正定,并求下列齐次方程组的通解:
选项
答案
二次型矩阵是 [*] 设α是属于特征值λ
0
的特征向量,即A
1
α=λ
0
α,或 [*] 由此可得 [*] 易解出 λ
0
=3,b=0,a=2. 对于[*],由于|A
1
|=0,所以f不是正定二次型. 将a=2,b=0代入方程组,对系数矩阵作初等行变换化为行阶梯形矩阵: [*] 当c=6时,对B进一步用初等行变换化为含最高阶单位矩阵的矩阵,得到 [*] 则A
2
X=0的一个基础解系含2个解向量: α
1
=[一9,19,一7,1,0]
T
, α
2
=[2,一7,2,0,1]
T
, 其通解为X=k
1
α
1
+k
2
α
2
,k
1
,k
2
为任意常数. 当c≠6即c-6≠0时,矩阵B用初等行变换进一步可化为含最高阶单位矩阵的矩阵: [*] 这时方程组A
2
X=0的基础解系只含一个解向量: [一(3c一10)/14,一(23-2c)/7,0,一(c一8)/7,7]
T
. 为方便计,取 α
3
=[一(3c一10)/2,一(23—2c),0,一(c一8),49]
T
=[5—3c/2,2c一23,0,(8一c),49]
T
. 故当c≠6时,方程组A
2
X=0的通解为k
3
α
3
,其中k
3
为任意常数.
解析
写出二次型矩阵A,由题设条件列出方程易求得a、b和α的特征值λ
0
.然后再将所给齐次方程组的系数矩阵用初等行变换化为含最高阶单位矩阵的矩阵,用基础解系的简便求法即可写出其基础解系及通解.
转载请注明原文地址:https://jikaoti.com/ti/CziRFFFM
0
考研数学三
相关试题推荐
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
已知A*是A的伴随矩阵,求A*的特征值与特征向量.
已知A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于()
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P—1AP;③AT;α肯定是其特征向量的矩阵个数为()
设在区间(一∞,+∞)内f(x)>0,且当忌为大于0的常数时有f(x+k)=,则在区间(一∞,+∞)内函数f(c)是()
设f(x)有二阶导数,且,证明级数绝对收敛。
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:(Ⅰ)在(a,b)内,g(x)≠0;(Ⅱ)在(a,b)内至少存在一点ξ,使。
计算n阶行列式,其中α≠β。
设n阶矩阵A=。证明:行列式|A|=(n+1)an。
设三阶行列式D3的第二行元素分别为1,一2,3,对应的代数余子式分别为一3,2,1,则D3=___________。
随机试题
A.圆韧带内的小凹动脉B.股骨干滋养动脉升支C.旋股内、外侧动脉的分支D.骺外侧动脉经股骨颈骨折损伤的血管主要是
患者男性,26岁。病程3个月,首次住院,入院诊断为精神分裂症,首次使用抗精神病药物。
A.乳糜微粒B.极低密度脂蛋白C.低密度脂蛋白D.中间密度脂蛋白E.高密度脂蛋白运输外源性三酰甘油的脂蛋白
下列项目管理组织方式中,项目部虽需接受上级组织职能部门的指导,但本身仍处于项目管理主导地位的是()组织。
谨慎原则的关键是要搞清楚存在不存在不确定性因素的情况。()
与其他资产类型的评估相比,矿业权评估的不确定性较多,主要体现为()。
企业所得税纳税审核中发现下列所得,可以减按10%的税率征收企业所得税的有()。
一、注意事项1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力与对表达能力并重的考试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、给定材料1.国家助学
[A]However,thecultureofAtlantisbegantodecay.Platorecountsthatthepeoplechangedtheirlaw-respectingwayoflife.The
A、 B、 C、 C根据“计算机是于1976年发明的。”可知与图片C相符。所以应选C。
最新回复
(
0
)