首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2018年] 设数列{xn}满足:x1>0,xnexn+1=exn一1(n=1,2,…).证明{xn}收敛,并求xn.
[2018年] 设数列{xn}满足:x1>0,xnexn+1=exn一1(n=1,2,…).证明{xn}收敛,并求xn.
admin
2019-04-08
85
问题
[2018年] 设数列{x
n
}满足:x
1
>0,x
n
e
x
n+1
=e
x
n
一1(n=1,2,…).证明{x
n
}收敛,并求
x
n
.
选项
答案
设f(x)=e
x
一1一x,x>0,则有 f’(x)=e
x
一1>0,f(x)>f(0)=0,[*]>1, 从而e
x
2
=[*]>1,x
2
>0. 猜想x
n
>0,现用数学归纳法证明:n=1时,x
1
>0,成立. 假设n=k(k=1,2,…)时,有x
k
>0,则n=k+1时有 e
x
k+1
=[*]>1,x
k+1
>0. 因此x
n
>0,有下界.再证单调性. x
n+1
-x
n
=[*]. 设g(x)=e
x
一1一xe
x
,x>0时,g’(x)=e
x
一e
x
一xe
x
=一xe
x
<0,所以g(x)单调递减,g(x)<g(0)=0,即有e
x
一1<xe
x
,因此 x
n+1
一x
n
=[*] 即数列{x
n
}单调递减.故由单调有界准则可知极限[*]x
n
存在. 不妨设[*]x
n
=A,则Ae
A
=e
A
一1. 因为g(x)=e
x
一1-xe
x
只有唯一的零点x=0,所以A=0,即 [*]x
n
=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/CnoRFFFM
0
考研数学一
相关试题推荐
已知微分方程y’+y=f(x),且f(x)是R上的连续函数.(I)当f(x)=x时,求微分方程的通解.(Ⅱ)当f(x)为周期为T的函数,证明:微分方程存在唯一以T为周期的解.
下列函数在x=0处不可导的是()
设f(x),g(x)在点x。可导,且f(x。)=g(x。),fˊ(x。)=gˊ(x。),若h(x)在x。的某一邻域内满足f(x)≤h(x)≤g(x),证明:h(x)在点x。可导,并且hˊ(x。)=fx。(x。)=gx。(x。).
求过直线且与点(1,2,1)的距离为l的平面方程.
设n阶矩阵A正定,X=(x1,x2,…,xn)T,证明:二次型为正定二次型.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=O的通解.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
(2009年)设Ω={(x,y,z)|x2+y2+z2≤1},则
[2002年]已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换X=PY可化成标准形f=6y12,则a=_______.
[2018年]将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.
随机试题
下列不属于瘀血痹阻心脉及心的阳气虚衰的表现是
Burgur(伯格)练习的目的是
语言错乱,说后自知,为
目前诊断子宫内膜异位症的最佳方法是
商业银行通过一系列制度、程序和方法,对风险进行()。
不铸造金币,没有金币流通,实际流通的是纸币—银行券;银行券规定含金量,但不能自由兑换黄金,只能在规定的数额以上兑换黄金;黄金集中由政府保管,作为银行券流通的保证。这种金本位制是()。
“天行有常,不为尧存,不为桀亡,应之以治则吉,应之以乱则凶。”提出这一观点的学派是()。
下列不正确的说法有()。
()对于洞察相当于实力对于()
Themainpurposeofannouncingtheaboveeventsistogiveinformationabout.Ifyoudon’twanttomisstheRedbirds,youmust
最新回复
(
0
)