首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. (Ⅰ)求a的值; (Ⅱ)将β1,β2,β3用α1,α2,α3线性表示.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. (Ⅰ)求a的值; (Ⅱ)将β1,β2,β3用α1,α2,α3线性表示.
admin
2017-04-24
32
问题
设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,1,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,a)
T
线性表示.
(Ⅰ)求a的值;
(Ⅱ)将β
1
,β
2
,β
3
用α
1
,α
2
,α
3
线性表示.
选项
答案
4个3维向量β
1
,β
2
,β
3
,α
i
线性相关(i=1,2,3),若β
1
,β
2
,β
3
线性无关,则α
i
可由β
1
,β
2
,β
3
线性表示(i=1,2,3),这与题设矛盾,于是β
1
,β
2
,β
3
线性相关,从而 0=|β
1
,β
2
,β
3
|=[*] 于是a=5.此时,α
1
不能由向量组β
1
,β
2
,β
3
线性表示. 考虑下列矩阵的初等行变换 [β
1
,β
2
,β
3
|α
1
,α
2
,α
3
]=[*] 可见当a≠5时,α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示;当a=5时,α
1
,α
2
不能由β
1
,β
2
,β
3
线性表示,故a=5. (Ⅱ)令矩阵A=[α
1
,α
2
,α
3
|β
1
,β
2
,β
3
],对A施行初等行变换 [*] 从而,β
1
=2α
1
+4α
2
一α
3
,β
2
=α
1
+2α
2
,β
3
=5α
1
+10α
2
一 2α
3
.
解析
转载请注明原文地址:https://jikaoti.com/ti/ClzRFFFM
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=∫01f(x)dx=0,证明:存在ξ∈(0,1),使得f’(ξ)+f(ξ)=0.
证明:当x>0时,x/(1+x)<ln(1+x)<x.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
求关于给定的原始式所满足的微分方程。y=Acosax+Bsinax,A、B为任意常数,a为一固定常数。
设f(u,v)具有连续偏导数,且满足f’u(u,v)+f’v(u,v)=uv,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
设A,B为同阶可逆矩阵,则().
设A为n阶可逆矩阵,则下列结论正确的是().
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设矩阵A与B相似,且求a,b的值;
随机试题
ThetraditionalAmericanThanksgivingDaycelebrationgoesbackto1621.In【61】yearaspecialfeastwaspreparedinPlymouth,Ma
=()。
在为政府出资人服务的过程中,工程咨询单位接受政府部门、机构委托,为它们出资建设项目、课题研究提供服务,其中项目评估的重点是评价项目的()
2×16年12月31日,甲公司对一起未决诉讼确认的预计负债为300万元。2×17年3月6日,法院对该起诉讼判决,甲公司应赔偿乙公司400万元,甲公司和乙公司均不再上诉,至2×17年3月31日甲公司未实际支付该款项。甲公司适用的所得税税率为25%,按净利润的
陈述性知识回答“做什么"和“怎么做"。
NobelPrizesareawardedtothescientistswho(have)madegreatachievementsinacertainfield.
某首饰店将一枚铜戒指误当黄金戒指卖给李某。这一行为属于()。
一台主机要解析www.abc.edu.cn的IP地址,如果这台主机配置的域名服务器为202.120.66.68,因特网顶级域名服务器为11.2.8.6,而存储www.abc.edu.cn与其IP地址对应关系的域名服务器为202.113.16.10,那么这
ManyWomenWhoBeatCancerDon’tChangeHabitsManywomenwhobattlebreastcancerwilltellyouit’salife-changingexperi
Thereweretimes______(我尽量避免去想那些令人不快的事).
最新回复
(
0
)