首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(99年)设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则 【 】
(99年)设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则 【 】
admin
2017-05-26
43
问题
(99年)设向量β可由向量组α
1
,α
2
,…,α
m
线性表示,但不能由向量组(Ⅰ):α
1
,α
2
,…,α
m-1
线性表示,记向量组(Ⅱ):α
1
,α
2
,…,α
m-1
,β,则 【 】
选项
A、α
m
不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示.
B、α
m
不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示.
C、α
m
可由(Ⅰ)线性表示,也可由(Ⅱ)线性表示.
D、α
m
可由(Ⅰ)线性表示,但不可由(Ⅱ)线性表示.
答案
B
解析
由题设条件,存在常数k
1
,k
2
,…,k
m
使得
k
1
α
1
+k
2
α
2
+…+k
m
α
m
=β (*)
且必有k
m
≠0(否则k
m
=0,则由上式知β可由(Ⅰ)线性表示,这与已知条件矛盾).于是得
即α
m
可由(Ⅱ)线性表示.
另一方面,如果α
m
可由(Ⅰ)线性表示:
α
m
=λ
1
α
1
+λ
2
α
2
+…+λ
m-1
α
m-1
将上式代入(*)式,则得
β=(k
1
+β
m
λ
1
)α
1
+(k
2
+k
m
λ
2
)α
2
+…+(k
m-1
+k
m
λ
m-1
)α
m-1
即β可由(Ⅰ)线性表示,这与已知条件矛盾,故α
m
不能由(Ⅰ)线性表示.
综合以上两方面的结果,即知B正确.
转载请注明原文地址:https://jikaoti.com/ti/CfSRFFFM
0
考研数学三
相关试题推荐
设f(x,y)连续,,其中D1=[-a,a]×[-b,b],D2=[0,a]×[0,b],a,b是两正常数,试用二重积分的几何意义说明:若f(x,y)=f(-x,y)=f(x,-y)=f(-x,-y),则I1=4I2.
A、 B、 C、 D、 C
命题①f(x),g(x)在xn点的某邻域内都无界,则f(x),g(x)在xn点的该邻域内一定无界;②limf(x)=∞,limg(x)=∞,则lim[f(x)g(x)]=∞;③f(x)及g(x)在xn点的某邻域内均有界,则f(x),g(x)在xo的该邻域内
通过直线且与球面x2+y2+z2=4相切的平面方程为_____.
设10件产品中有4件不合格品,从中任取两件,已知所取的两件产品中有一件是不合格品,则另一件也是不合格的概率为_____.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
幂级数的收敛区间为__________.
设生产函数为Q=ALaKβ,其中Q是产出量,L是劳动投入量K是资本投入量,而A,a,β均为大于零的参数,则当Q=1时K关于L的弹性为_________.
设随机事件A与B相互独立,且P(B)=0.5,P(A-B)=0.3,则P(B-A)=
设f(x)在(一∞,+∞)上可导,且其反函数存在,记为g(x),若∫0f(x)g(t)dt+∫0xf(t)dt=xex—ex+1,则当一∞<x<+∞时f(x)=________.
随机试题
下丘脑性闭经常见的原因是
关于早期龋的描述,不正确的是
下列哪项不是自发性心绞痛的特点
《医疗事故处理条例》规定,医院对参加医疗事故处理的患者近亲属交通费、误工费和住宿费的损失赔偿人数不得超过()。
接触职业危害因素不一定就会患职业病,职业病发生与否主要取决于()。
《建筑材料及制品燃烧性能分级》(GB8624—2012)与《建筑材料及燃烧性能分级》(GB8624—2006)对建筑内部装修材料按燃烧性能划分级对应关系的描述,正确的是()。
全面推行政务公开要求推进()。
学生李某从小父母离异,跟着年老多病的祖父生活,祖父对他管教不严,他经常和社会上的一些待业青年混在一起,打架斗殴。父亲偶尔回家,对他不是打就是骂。在学校,他破坏课堂纪律,拖欠作业,完不成学习任务,还欺负小同学。全班同学都看不起他,疏远他,但他喜欢运动,是班级
汇率是本国货币与其他货币之间的比价关系。是外汇在市场中的价格。
Theautomobilehasmanyadvantages.Aboveall,it【B1】______peoplefreedomtogowheretheywanttogowhentheywanttogothere
最新回复
(
0
)