已知随机变量X与Y相互独立且都服从参数为的0-1分布,即P{X=0}=P{X=1}=,P{Y=0}=P{Y=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立.

admin2018-11-23  21

问题 已知随机变量X与Y相互独立且都服从参数为的0-1分布,即P{X=0}=P{X=1}=,P{Y=0}=P{Y=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立.

选项

答案由于(X,Y)是二维离散随机变量,故由边缘分布及相互独立可求得联合分布;应用解题一般模式,即可求得Z及(X,Z)的分布,进而判断X、Z是否独立. 由题设知(X,Y)~[*],则Z、(X,Z)的分布为 [*] 由此可知Z服从参数p=[*]的0.1分布;(X,Z)的联合概率分布为 [*] 因P{X=i,Z=j}=[*]=p{X=i}p{Z=j}(i,j=0,1),故X与Z独立.

解析
转载请注明原文地址:https://jikaoti.com/ti/Cb1RFFFM
0

最新回复(0)