首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是实对称矩阵,λ1与λ2是不同的特征值,p1与p2分别是属于λ1与λ2的特征向量,证明:p1与p2正交.
设A是实对称矩阵,λ1与λ2是不同的特征值,p1与p2分别是属于λ1与λ2的特征向量,证明:p1与p2正交.
admin
2020-06-05
31
问题
设A是实对称矩阵,λ
1
与λ
2
是不同的特征值,p
1
与p
2
分别是属于λ
1
与λ
2
的特征向量,证明:p
1
与p
2
正交.
选项
答案
根据已知条件,有Ap
1
=λ
1
p
1
,Ap
2
=λ
2
p
2
,且λ
1
≠λ
2
.又因为A是实对称矩阵,即A
T
=A,故 λ
1
p
1
T
=(λ
1
p
1
)
T
=(Ap
1
)
T
=p
1
T
A
T
于是 λ
1
p
1
T
p
2
=p
1
T
Ap
2
=p
1
T
(λ
2
p
2
)=λ
2
p
1
T
p
2
即(λ
1
-λ
2
)p
1
T
p
2
=0.又λ
1
≠λ
2
,故p
1
T
p
2
=0,即p
1
与p
21
正交.
解析
转载请注明原文地址:https://jikaoti.com/ti/CL9RFFFM
0
考研数学一
相关试题推荐
微分方程y’-xe-y+=0的通解为_______.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=一2,则行列式|一A1一2A2,2A2+3A3,一3A3+2A1|=________.
设是f(x)的一个原函数,则∫1exf’(x)dx=_____.
的一个基础解系为
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为()
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
设A,B是n阶方阵,A,Y,b是n×1矩阵,则方程组有解的充要条件是()
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型厂对应的矩阵为2ααT+ββT;
设(I)用变换x=t2将原方程化为y关于t的微分方程;(Ⅱ)求原方程的通解.
随机试题
Shedoesnotthinkthereisanythinghecan______.
人工流产负压吸宫术适用于
硫酸镁抗惊厥的特点不包括
下列哪些情况被认为具有因果关系?
关于混凝土抗冻试件制作与养护的说法,正确的有()。
下图资本市场线中,切点投资组合具有的特征不包括()。
Toappreciatesomethingmeanstobegratefulorthankfulforit.Whenyouaregrateful,youliterally【C1】________yourselfupto
设f(x)在[a,b]上有二阶导数,且f’(x)>0.(Ⅰ)证明至少存在一点ξ∈(a,b),使∫abf(x)dx=f(b)(ξ一a)+f(a)(b—ξ);(Ⅱ)对(Ⅰ)中的ξ∈(a,6),求.
设连接两点A(0,1),B(1,0)的一条凸弧,P(x,y)为凸弧AB上的任意点(图6.4).已知凸弧与弦AP之间的面积为x3,求此凸弧的方程.
Internet是目前世界上第一大互联网,它起源于美国,其雏形是()。
最新回复
(
0
)