首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)内二阶可导,且f’(x)和f’’(x)在(-∞,+∞)内有界.证明:f’(x)在(-∞,+∞)内有界.
设函数f(x)在(-∞,+∞)内二阶可导,且f’(x)和f’’(x)在(-∞,+∞)内有界.证明:f’(x)在(-∞,+∞)内有界.
admin
2018-09-25
52
问题
设函数f(x)在(-∞,+∞)内二阶可导,且f’(x)和f’’(x)在(-∞,+∞)内有界.证明:f’(x)在(-∞,+∞)内有界.
选项
答案
存在正常数M
0
,M
2
,使得对任意x∈(-∞,+∞),恒有 |f(c)|≤M
0
,|f’’(x)|≤M
2
. 由泰勒公式,有f(x+1)=f(c)+f’(x)+[*]f’’(ξ),其中ξ介于x与x+1之间,整理得 f’(x)=f(x+1)-f(x)-[*]f’’(ξ) 所以 [*] 所以函数f’(x)在(-∞,+∞)内有界.
解析
转载请注明原文地址:https://jikaoti.com/ti/CC2RFFFM
0
考研数学一
相关试题推荐
设有微分方程y′-2y=φ(x),其中φ(x)=试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
求下列微分方程的通解:(Ⅰ)(x-2)dy=[y+2(x-2)3]dx;(Ⅱ)y2dx=(x+y2)dy;(Ⅲ)(3y-7x)dx+(7y-3x)dy=0;(Ⅳ)-3xy=xy2.
已知A是2n+1阶正交矩阵,即AAT=ATA=E,证明:|E—A2|=0.
设连续型随机变量X的分布函数为其中a>0,Ф(x),φ(x)分别是标准正态分布的分布函数与概率密度,令Y=X2,求Y的密度函数.
已知总体X服从正态分布N(μ,σ2),X1,…,X2n是来自总体X容量为2n的简单随机样本,当σ2未知时,Y=(X2i—X2i-1)2为σ2无偏估计,则C=__________,DY=__________.
若A是n阶正定矩阵,证明A-1,A*也是正定矩阵.
已知函数f(x)在区间[a,b]上连续,在(a,b)内f′(x)存在.设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b.试证:在区间(a,b)内至少存在一点ξ,使f″(ξ)=0.
设二阶常系数线性微分方程y″+ay′+βy=γe2x的一个特解为y=e2x+(1+x)ex.求此方程的通解.
(02年)设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均为实对称矩阵时,试证(1)的逆命题成立.
(95年)假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ξ,使
随机试题
患者,男性,36岁。上腹部疼痛伴恶心、呕吐4小时入院。5小时前进食晚餐(红烧肉、排骨、白酒等),1小时后突发腹痛,以上腹部为主,胀痛性质,持续发作,半蹲位稍可缓解,伴恶心、呕吐,无腹泻。提示:体查:体温38.5℃,心率120次/分,呼吸25次/分,血压10
分段诊刮顺序是
气性坏疽最关键的治疗措施是
根据《标准施工合同》,履约担保和预付款担保的主要区别有()。
在一个工程项目中,具有独立的设计文件、竣工后可以独立发挥生产能力或效益的一组配套齐全的工程项目为( )。
关于数字印刷的说法,正确的有()等。
《祭侄文稿》是()为祭奠其侄季明而作的祭文稿。
学习中所谓的“触类旁通”“举一反三”是知识的()在理解中的表现。
关于容器,以下叙述中错误的是()。
Becausethereisevidenceofseverelyharmfuleffectsfromchemicaldumps,thegovernmenthas_____toughercleanupmeasures.
最新回复
(
0
)