设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.

admin2018-11-21  15

问题 设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证:
    [∫01f(x)dx]2>∫01f3(x)dx.

选项

答案即证[∫01f(x)dx]2一∫01f3(x)dx>0.考察F(x)=[∫0xf(t)dt]2一∫0xf3(t)dt, 令F(x)=[∫0xf(t)dt]2一∫0xf3(t)dt,易知F(x)在[0,1]可导,且 F(0)=0,F’(x)=f(x)[2∫0xf(t)dt一f2(x)]. 由条件知,f(x)在[0,1]单调上升,f(x)>f(0)=0(x∈(0,1]),从而F’(x)与g(x)=2∫0xf(t)dt—f2(x)同号.再考察 g’(x)=2 f(x)[1一f’(x)]>0(x∈(0,1)), g(x)在[0,1]连续,于是g(x)在[0,1]单调上升,g(x)>g(0)=0(x∈(0,1]),也就有F’(x)>0(x∈(0,1]),即F(x)在[0,1]单调上升,F(x)>F(0)=0(x∈(0,1]).因此 F(1)=[∫01f(x)dx]2一∫01f3(x)dx>0. 即结诊成立.

解析
转载请注明原文地址:https://jikaoti.com/ti/C02RFFFM
0

最新回复(0)