首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶正定矩阵,B是n阶反对称矩阵,则矩阵A—B2是①对称阵,②反对称阵,③可逆阵,④正定阵,四个结论中,正确的个数是 ( )
设A是n阶正定矩阵,B是n阶反对称矩阵,则矩阵A—B2是①对称阵,②反对称阵,③可逆阵,④正定阵,四个结论中,正确的个数是 ( )
admin
2018-03-30
49
问题
设A是n阶正定矩阵,B是n阶反对称矩阵,则矩阵A—B
2
是①对称阵,②反对称阵,③可逆阵,④正定阵,四个结论中,正确的个数是 ( )
选项
A、1.
B、2.
C、3.
D、4.
答案
C
解析
因 (A—B
T
)
T
=A
T
+[(一B)B]
T
=A
T
+(B
T
B)
T
=A
T
+B
T
B=A—B
2
,
故A—B
T
是对称阵.
又任给x≠0,则有
x
T
(A—B
2
)x=x
T
Ax—x
T
(一B)
T
Bx=x
T
Ax+(Bx)
T
Bx,
A正定,x
T
Ax>0,(Bx)
T
(Bx)≥0.则x
T
(A—B
2
)x>0,故A—B
2
是正定阵.
A—B
2
是正定阵,则A—B
2
是可逆阵,故结论①,③,④正确,应选(C).
转载请注明原文地址:https://jikaoti.com/ti/BwKRFFFM
0
考研数学三
相关试题推荐
将函数展开成x-1的幂级数,并指出其收敛区间.
将函数展成x的幂级数,并指出其收敛区间.
设向量组(Ⅰ):α1,α2,…,αr,线性无关,向量组(Ⅱ)可由向量组(Ⅱ):β1,β2,…,βs可由(Ⅰ)线性表示:βj=α1jα1+α2jα2+…+αrjαr(j=1,2.…,s).证明:向量组(Ⅱ)线性无关矩阵A=(αij)r×s的秩为s.
设函数f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使
设函数y=f(x)在区间[一1,33上的图形为则函数的图形为
某企业生产某种商品的成本函数为C=a+bQ+cQ2,收入函数为R=ιQ一sQ2,其中常数a,b,c,ι,s都是正常数,Q为产量,求:(Ⅰ)当税率为t时,该企业获得最大利润时的销售量;(Ⅱ)当企业利润最大时,t为何值时征税收益最大.
下列命题正确的是().
设随机变量X服从参数为A的指数分布,令Y=求:(Ⅰ)P{X+Y=0};(Ⅱ)随机变量Y的分布函数;(Ⅲ)E(Y).
设a=(1,1,一1)T是A=的一个特征向量.(Ⅰ)确定参数a,b的值及特征向量a所对应的特征值;(Ⅱ)问A是否可以对角化?说明理由.
设x→a时,f(x)与g(x)分别是x-a的n阶与m阶无穷小,设有以下命题:①f(x)g(x)是x-a的m+n阶无穷小.②若n>m,则是x-a的n-m阶无穷小.③若n≤m,则f(x)+g(x)是x-a的n阶无穷小.则以上命题中正确的个数是(
随机试题
(2007年第75题)下列属于退行性变的疾病是
胰腺与周围血管解剖位置正确的是
男,3岁。痉挛性咳嗽、低热1个月。查体:精神好,卡疤阳性,双肺呼吸音粗糙,未闻及干湿、啰音及哮鸣音。血常规:WBC5.6×109/L,N0.36,L0.64。X射线胸片示右肺门阴影增大。初步诊断为
间接接触电击是人体触及非正常状态下带电的带电体时发生的电击。预防间接接触电击的正确措施是()。
公积金个人住房贷款,实行“高进高出”的利率政策,带有较强的政策性。
社区卫生服务的主要内容包括( )和基本医疗服务。
AWhatdoesthecalorimeterlooklikeinside?BWhatprogramwasdesignedfortheexperiment?CWhatisacalorimeter?DWha
Everyartistknowsinhisheartthatheissayingsomethingtothepublic.Notonlydoeshewanttosayitwell,buthewantsit
A.physicalB.adaptC.regulationD.taughtE.accuracyF.suitG.rousedH.r
Shoppingforclothesisnotthesameexperienceforamanasitisforawoman.Amangoesshoppingbecauseheneedssomething.
最新回复
(
0
)