首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+α2+…+(n-1)αn-1-0,b=α1+α2+…+αn. (1)证明方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+α2+…+(n-1)αn-1-0,b=α1+α2+…+αn. (1)证明方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
admin
2021-11-15
28
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α
1
+α
2
+…+(n-1)α
n-1
-0,b=α
1
+α
2
+…+α
n
.
(1)证明方程组AX=b有无穷多个解;
(2)求方程组AX=b的通解.
选项
答案
(1)因为r(A)=n-1,又b=α
1
+α
2
+…+α
n
,所以r([*])=n-1, 即r(A)=r(A)=n-1<n,所以方程组AX=b有无穷多个解. (2)因为α
1
+2α
2
+…+(n-1)α
n-1
=0,所以α
1
+2α
2
+…+(n-1)α
n-1
+0α
n
=0, 即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n-1,0)
T
, 又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n,-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://jikaoti.com/ti/BplRFFFM
0
考研数学二
相关试题推荐
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0﹥0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件。
设,问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解。
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.证明:.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解。
设齐次线性方程组其中ab≠0,n≥2,讨论a,b取何值时,方程组只有零解,有无穷多个解?在有无穷多个解时,求出其通解。
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是()。
设A为三阶实对称矩阵,a1=(a,-a,1)T是方程组AX=0的解,a2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=______.
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2—2α3,(α2一α1),α1—3α2+2α3中,是对应齐次线性方程组Ax=0解向量的共有()
设Φ1(x),Φ2(x),Φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为()。
随机试题
将多个护理诊断排列优先顺序时,次优问题是
企业能将分散的数据统一汇总到会计软件中进行集中处理,是因为()在会计电算化中的广泛应用。
以下被誉为“天下第一泉”的有()。
E—R图有实体型、属性和联系三个基本要素,分别用矩形、椭圆形和________表示。
1978年中国共产党十一届三中全会作出的战略决策是()。
你单位正在开展“微笑服务”,有群众到你单位办事,却没有满意而归。群众很气愤,说你们只有微笑.没有服务。你怎么办?
男性,44岁。干咳、憋喘1个月余,拍胸片示有肺下叶肺不张,CT检查显示右肺门2.5cm×2.0cm占位,进一步行纤维支气管镜检查,发现右下肺支气管开口处圆形肿物,活检病理证实为小细胞肺癌,进行化疗2周期后,CT复查发现肿物消失,下一步的治疗措施是
Thefunofplayingthegamewasagreaterincentivethantheprize.
下列关于融资租赁合同中,租赁物的瑕疵担保责任的表述,正确的有()。
A、Coinscanbeseeneverywhere.B、Coinsareeasytopreserve.C、Coinsbearmarksofhistory.D、Coinsarebeautifulandshining.
最新回复
(
0
)