首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(α1,α2,…,αn)T是Rn中的非零向量,方阵A=ααT. (1)证明:对正整数m,存在常数t,使Am=tm一1A,并求出t; (2)求一个可逆矩阵P,使P一1AP=Λ为对角矩阵.
设α=(α1,α2,…,αn)T是Rn中的非零向量,方阵A=ααT. (1)证明:对正整数m,存在常数t,使Am=tm一1A,并求出t; (2)求一个可逆矩阵P,使P一1AP=Λ为对角矩阵.
admin
2017-04-23
33
问题
设α=(α
1
,α
2
,…,α
n
)T是R
n
中的非零向量,方阵A=αα
T
.
(1)证明:对正整数m,存在常数t,使A
m
=t
m一1
A,并求出t;
(2)求一个可逆矩阵P,使P
一1
AP=Λ为对角矩阵.
选项
答案
(1)A
m
=(αα
T
)(αα
T
)…(αα
T
)=α(α
T
α)
m一1
一α
T
=一(α
T
α)
m一1
(αα
T
)=[*]=t
m一1
A,其中t=[*] 秩(A)=1,因实对称矩阵A的非零特征值的个数等于它的秩,故A只有一个非零特征值,而有n一1重特征值λ
1
=λ
2
=…=λ
n一1
=0.设α
1
≠0,由0E [*] 得属于特征值0的特征值可取为:ξ
1
=[*] 由特征值之和等于A的主对角线元素之和,即0+0+…+0+λ
n
=[*] =α
T
α,由Aα=(αα
T
)α=α(α
T
α)=αλ
n
=λ
n
α及α≠0,得与λ
n
对应特征向量为α,令P=[ξ
1
ξ
2
… ξ
n一1
α],则有P
一1
AP=diag(0,0,…,0,[*]a
i
2
)为对角阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/BdzRFFFM
0
考研数学二
相关试题推荐
设z(x,y)=(1-y2)f(y-2x),且已知,f(0)=1,则∫02z(1,y)dy=________。
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别为p1=18-2Q1p2=12-Q2其中p1,p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求;量,单位:吨)并且该企业生产
设生产某种产品必须投入两种要素x1和x2分别为两要素的投入量,Q为产出量,若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1,假设两种要素的价格分别为p1和p2,试问:当产量为12时,两要素各投入多少可以使得投入总费用最小?
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程xex-yey=zex所确定,求du。
设y=(C1+C2x)e2x是某二阶常系数线性微分方程的通解,求对应的方程。
已知z=f(x,y)满足:dz=2xdx-4ydy且f(0,0)=5.求f(x,Y);求f(x,y)在区域D={(x,y)|x2+4y2≤4)上的最小值和最大值.
利用定积分计算极限
已知函数求a的值。
设A为3阶实对称矩阵,A的秩为2,且求矩阵A.
随机试题
术后肺不张的主要治疗方法是_______。
男性,20岁,有四肢关节疼痛病史。近半年来,时感、心悸,活动后气急,休息后缓解。体检:两颧紫红色,口唇轻度发绀,听诊心尖区闻及舒张期隆隆样杂音,胸骨左缘第3至第4肋间可闻及二尖瓣开放拍击音,P2亢进,分裂。应首先考虑的诊断是
立交上如考虑设置自行车道时,混行车道的最大纵坡应为()
根据我国“水轮机型号编制规则”,水轮机的型号由()部分组成。
我国大中型工程业主方主要通过______选择设计方案和设计单位。
下列不属于合同风险的是()。
水峰主要是()在吸收。
在论述教学与发展的关系时,提出“最近发展区”这一重要概念的是苏联心理学家()。
简述商业银行的资产和负债业务。
PASSAGETHREEWhyarenumerousforeigntalentsattractedtoSiliconValley?
最新回复
(
0
)