首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(x
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(x
admin
2021-11-09
28
问题
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取x
i
∈[a,b](i=1,2,…,n)及k
i
>0(i=1,2,…,n)且满足k
1
+k
2
+…+k
n
=1.证明:
f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b]. 因为f’’(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x-x
0
), 分别取x=x
i
(i=1,2,…,n),得 [*] 由k
i
>0(i=1,2,…,n),上述各式分别乘以k
i
(i=1,2,…,n),得 [*] 将上述各式分别相加,得f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
解析
转载请注明原文地址:https://jikaoti.com/ti/BVlRFFFM
0
考研数学二
相关试题推荐
设f(χ)连续,f(0)=0,f′(0)=1,求[∫-aaf(χ+a)dχ-∫-aaf(χ-a)dχ].
设函数y=y(χ)由arctan确定,则=_______.
讨论f(χ,y)=在点(0,0)处的连续性、可偏导性及可微性.
求下列导数:(1)设y=,求.(2)设y=(1+χ2)tanχ,求.
设当χ>0时,方程忌kχ+=1有且仅有一个根,求k的取值范围.
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是()。
计算二重积分.
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
设二次型f(x1,x2,x3)=XTAX=x12+5x22+x32-4x1x2+2x2x3,则对任意X≠0,均有()
设当χ→0时,忌sin2χ~,则k=_______.
随机试题
游戏治疗的终极目标是指游戏治疗完成后要解决哪些问题,以下可能是某接受游戏治疗的儿童的治疗终极目标的是()
运载内源性甘油三酯的主要脂蛋白是
应急预案应当及时修订并归档的情形包括()。
在国家统计系统中,上级统计局对下级统计局具有业务上的指导权和协调权。()
根据《合伙企业法》的规定,除合伙协议另有约定外,下列各项中应当由全体合伙人一致同意才能作出决议的有()。
人和实业集团股份有限公司(以下简称“人和公司”)是一家在国内上市的大型多元化投资公司。人和公司实力雄厚,资金充裕。其全资拥有的人生地产代理有限公司(以下简称“人生公司”)是全国最大的连锁经营地产代理中介机构。人生公司在每个省分别设立分公司,统管该省
在下列()情形中,属于拒绝出具验资报告的情形。
下列游记中属于柳宗元《永州八记》的是()。
简述幼儿心理学的研究内容。
离岸金融市场
最新回复
(
0
)