首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X与Y相互独立同分布,其中 令U=max{X,Y},V=min{X,Y}. (I)求(U,V)的联合分布; (Ⅱ)求P(U=V); (Ⅲ)判断U,V是否相互独立,若不相互独立,计算U,V的相关系数.
设随机变量X与Y相互独立同分布,其中 令U=max{X,Y},V=min{X,Y}. (I)求(U,V)的联合分布; (Ⅱ)求P(U=V); (Ⅲ)判断U,V是否相互独立,若不相互独立,计算U,V的相关系数.
admin
2017-12-18
26
问题
设随机变量X与Y相互独立同分布,其中
令U=max{X,Y},V=min{X,Y}.
(I)求(U,V)的联合分布;
(Ⅱ)求P(U=V);
(Ⅲ)判断U,V是否相互独立,若不相互独立,计算U,V的相关系数.
选项
答案
(I)U,V的可能取值为1,2,3,显然P(U<V)=0. P{U=1,V=1}=P{X=1,Y=1}=P{X=1}P{Y=1}=[*] P{U=2,V=1}=P{X=2,Y=1}+P{X=1,Y=2}=2P{X一2}P{Y一1}=[*] P{U=2,V=2}=P{X=2,Y=2}=P{X=2}P{Y=2}=[*] P{U=3,V=1}=P{X=3,Y=1}+P{X=1,Y=3}=2P{X=3}P{Y一1}=[*] P{U=3,V=2}=P{X=3,Y=2}+P{X=2,Y=3}=2P{X=3}P{Y=2}=[*]. P{U=3,V=3}=P{X=3,Y=3}=P{X=3}P{Y=3}=[*] 于是(U,V)的联合分布律为 [*] (Ⅱ)P{U=V}=P{U=1,V=1}+P{U=2,V=2}+P{U=3,V=3}=[*]. (Ⅲ)P{U=1}=[*]P{U=1,V=3}=0, 因为P{U=1,V=3}≠P{U=1}P{V=3},所以U,V不独立. [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/BVVRFFFM
0
考研数学一
相关试题推荐
设总体X~N(μ,σ2),X2,X2,…,Xn是来自总体X的样本,令,求E(X1T).
设随机变量X的密度函数为问X,|X|是否相互独立?
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.证明;
设,α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设f(x)的一个原函数为F(x),且F(x)为方程xy’+y=ex的满足的解.求的和.
求幂级数的和函数.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)一f(1)].若f(1)=,求:f(x)的极值
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(II)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中,正确的是()
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
求方程的通解.
随机试题
背景某高层建筑幕墙节能工程主楼为玻璃幕墙,裙楼为石材和单层铝板幕墙。玻璃幕墙采用穿条工艺生产的隔热铝型材,中空低辐射(Low—E)镀膜玻璃,非透明(石材、铝板)幕墙内侧采用岩棉保温层。工程施工过程中监理公司对下列问题提出异议:(1)隔热型材采用了PVC
晨检目的在于了解幼儿的健康状况,检查幼儿的个人清洁卫生,以便做到对疾病的早发现、早预防、早隔离、早治疗。适合晨检的时间是()
______nothingmoretodiscuss,theCEOgottohisfeet,saidgoodbyeandleftthemeetingroom.
异位妊娠按部位可分为()、()、()及()。
A.呼吸道合胞病毒B.EB病毒C.脊髓灰质炎病毒D.CMVE.人乳头瘤病毒可引起<6月龄婴儿肺炎的病毒
患者,男,48岁,素体肥胖。近日因工作繁忙,遂觉胸中满闷疼痛,胸痛彻背,短气喘息,自觉有气从胁下上逆抢心,舌苔白腻,脉沉弦,选方
善治寒饮咳喘、悬饮胁痛,尤以治痰在皮里膜外及经络者最宜的药物是()。
下面哪个路基施工项目不能在冬期进行施工( )。
设F(x)=g(x)φ(x),φ(x)在x=a连续但不可导,又g’(a)存在,则g(a)=0是F(x)在x=a可导的()条件.
软件按功能可以分为:应用软件、系统软件和支撑软件(或工具软件)。下面属于应用软件的是( )。
最新回复
(
0
)