首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是( )
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是( )
admin
2019-02-23
18
问题
设λ
1
,λ
2
是矩阵A的两个不同的特征值,对应的特征向量分别为α
1
,α
2
则α
1
,A(α
1
+α
2
)线性无关的充分必要条件是( )
选项
A、λ
1
≠0。
B、λ
2
≠0。
C、λ
1
=0。
D、λ
2
=0。
答案
B
解析
令k
1
α
1
+k
2
A(α
1
+α
2
)=0,则(k
1
+k
2
λ
1
)α
1
+k
2
λ
2
α
2
=0。
因为α
1
,α
2
线性无关,所以k
1
+k
2
λ
1
=0,且k
2
λ
2
=0。
当λ
2
≠0时,显然有k
1
=0,k
2
=0,此时α
1
,A(α
1
+α
2
)线性无关;反过来,若α
1
,A(α
1
+α
2
)线性无关,则必然有λ
2
≠0(否则,α
1
与A(α
1
+α
2
)=λ
1
α
1
线性相关),故应选B。
转载请注明原文地址:https://jikaoti.com/ti/BM1RFFFM
0
考研数学一
相关试题推荐
设常数k>0,则级数().
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2|为().
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
二次型f(x1,x2,x3)=x12+ax22+x32一4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:正交变换的矩阵Q.
在曲线族y=k(1-x2)(k>0)中确定参数k,使它代表的曲线与它在(-1,0)及(1,0)处的法线围成的面积最小,则k等于()
曲线y=x(x一1)(2一x)与x轴所围成的图形面积可表示为().
若二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3为正定二次型,则λ的取值范围是_______.
设3阶实对阵矩阵A满足A2-3A+2E=0,且|A|=2,则二次型f=xTAx的标准形为_____.
随机试题
天然气氨吸收制冷装置制冷系统氨发生温度应控制为125~130℃。
下列关于等渗性缺水的叙述,正确的是
下列除哪项外均为鸡血藤的成分( )。
患者,男性,40岁。脊髓损伤,双下肢截瘫。住院近2周,责任护士护理患者时,错误的做法是
下列关于行政合法性原则的说法不正确的是()。
城市主要污染源不包括()。
基金管理人通常设立—个独立的客户服务部门,通过一套完整的客户服务流程,一系列完备的软硬件设施,以系统化的方式,应用( )实现客户服务。
下列关于二战的描述,哪一项是正确的?
TheinventionofirrigationismeaningfulbecauseitcouldhelptoThepassageismainlyabout
Thereare______Workersinthisfactory.
最新回复
(
0
)