首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,方程组AX=β有解但不唯一. (1)求a; (2)求可逆矩阵P,使得P-1AP为对角阵; (3)求正交阵Q,使得QTAQ为对角阵.
设A=,方程组AX=β有解但不唯一. (1)求a; (2)求可逆矩阵P,使得P-1AP为对角阵; (3)求正交阵Q,使得QTAQ为对角阵.
admin
2020-03-16
28
问题
设A=
,方程组AX=β有解但不唯一.
(1)求a;
(2)求可逆矩阵P,使得P
-1
AP为对角阵;
(3)求正交阵Q,使得Q
T
AQ为对角阵.
选项
答案
(1)因为方程组AX=β有解但不唯一,所以|A|0,从而a=-2或a=1. 当a=-2时,[*],方程组有无穷多解; 当a=1时,[*],方程组无解,故a=-2. (2)由|λE-A|=λ(λ+3)(λ-3)=0得λ
1
=0,λ
2
=3,λ
3
=-3. 由(0E-A)X=0得λ
1
=0对应的线性无关的特征向量为ξ
1
=[*] 由(3E-A)X=0得λ
2
=3对应的线性无关的特征向量为ξ
2
=[*] 由(-3E-A)X=0得λ
3
=-3对应的线性无关的特征向量为ξ
3
=[*] 令P=[*],则P
-1
AP=[*] (3)令γ
1
=[*],γ
2
=[*],γ
3
= [*] 则Q
T
AQ=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/BFtRFFFM
0
考研数学二
相关试题推荐
[2010年]设m,n均是正整数,则反常积分dx的收敛性().
[*]
求微分方程y”+a2y=sinx的通解,其中常数a>0.
已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2。求正交变换x=Qy将f化为标准形。
求极限
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵。证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
设热水瓶内热水温度为T,室内温度为T0,t为时间(以小时为单位).根据牛顿冷却定律知:热水温度下降的速率与T-T0成正比.又设T0=20%,当t=0时,T=100℃,并知24小时后水瓶内温度为50℃,问几小时后瓶内温度为95℃?
求二元函数z=f(x,y)=x2y(4一x一y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求A的特征值与特征向量;
已知平面曲线Ax2+2Bxy+Cy2=1(C>0,AC-B2>0)为中心在原点的椭圆,求它的面积.
随机试题
财务和运输的保险费、契约、合同、公证费、咨询费、专有技术使用费和排污费都属于汽车运输企业的_______。
已知:S=’XYZ*+’T=’(X+Z)*Y’,试利用串的各种基本运算将S转换为T。
行政组织的宗教环境包括()
Mydeparturewilldepend______Igetleaveornot.
关于胎儿附属物叙述错误的是
普通席位与专用席位均不得转让和退回。()
下列对于V形的描述中,正确的有( )。
下列与“昭陵六骏”有关的人物是()。
中国烹饪是文化、是科学、是艺术。“四大菜系”是鲁菜、川菜、淮扬菜、粤菜的总称。这些菜系因地理、气候、习俗、特产的不同形成了各自的地方风味。川菜
DirectionsforQuantitativeComparisonQuestions:Someofthefollowingquestionsgiveyoutwoquantities,oneinColumnAando
最新回复
(
0
)