证明=(n+1)an.

admin2018-06-27  15

问题 证明=(n+1)an

选项

答案本题以证明题的形式出现,容易诱导想到用数学归纳法.记此行列式为Dn,对第1行展开得递推公式 Dn=2aDn-1-a2Dn-2. Dn=2aDn-1-a2Dn-2.改写为Dn-aDn-1=a(Dn-1-aDn-2),记Hn=Dn-aDn-1(n≥2),则n≥3时Hn=aHn-1,即{Hn}是公比为a的等比数列.而H2=D2-aD1=3a2-2a2=a2,得到Hn=an, 于是得到一个新的递推公式 Dn=aDn-1+an, 两边除以an,得Dn/an=Dn-1/an-1+1.于是{Dn/an}是公差为1的等差数列.D1/a=2,则 Dn/an=n+1,Dn=(n+1)an

解析
转载请注明原文地址:https://jikaoti.com/ti/B0dRFFFM
0

最新回复(0)