首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
admin
2017-12-29
39
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)。
选项
答案
设 F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(x)g(1), 则F(x)在[0,1]上的导数连续,并且 F’(x)= g(x).f’(x)—f’(x)g(1)=f’(x)[g(x)一g(1)]。 由于x∈[0,1]时,f’(x)≥0,g’(x)≥0,因此F’(x)≤0,即F(x)在[0,1]上单调递减。 注意到 F(1)=∫
0
1
g(t)f’(t)dt +∫
0
1
(t)g’(t)dt —f(1)g(1),故 F(1)=0。 因此x∈[0,1]时,F(x)≥F(1)=0,由此可得对任何a∈[0,1],有 ∫
0
a
g(x)f’(x)dx+f(x)g’(x)dx≥f(a)g(1)。 ∫
0
a
g(x)f’(x)dx =g(x)f’(x)|
0
a
一∫
0
a
f(x)g’(x)dx =f(a)g(a)一 ∫
0
a
f(x)g’(x)dx, ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x) dx =f(a)g(a)一∫
0
a
f(x)g’(x)dx+∫
0
1
f(x)g’(x)dx = f(a)g(a)+∫
a
1
f(x)g’(x)dx, 由于x∈[0,1]时,g’(x)≥0,因此 f(x)g’(x)≥f(a)g’(x),x∈[a,1], ∫
a
1
f(x)g’(z)dx≥∫
0
1
f(a)g’(x)dx=f(a)[g(1)—g(a)], 从而 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(a)+f(a)[g(1) —g(a)]=f(a)g(1)。
解析
转载请注明原文地址:https://jikaoti.com/ti/AyKRFFFM
0
考研数学三
相关试题推荐
设向量α=[α1,α2,…,αn]T≠0,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αTβ,求:A2;
A,B为n阶方阵.证明:(1)(2)计算
设f(x)在上具有连续的二阶导数,且f’(0)=0.证明:存在ξ,η,ω∈,使得f’(ξ)=
求下列函数的导数:
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.证明:存在η∈[-a,a],使a3f"(η)=3∫-aaf(x)dx.
微分方程的通解________包含了所有的解.
设区域D1为以(0,0),(1,1),为顶点的四边形,D2为以为顶点的三角形,而D由D,与D:合并而成。随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘密度fX(x)、fY(y)。
设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为_____.
微分方程(x2一1)dy+(2xy一cosx)dx=0满足初始条件y(0)=1的特解为___________。
随机试题
膜分离技术的优点是()。
生理性止血过程中作用最重要的物质是()
下列结构不出入肝门的是
目前确定住宅项目核心价格常用的方法是()。
设n维行向量矩阵A=E–αTα,B=E+2αTα,其中E为n阶单位矩阵,则AB等于()。
根据《防洪法》,在蓄滞洪区内建造的房屋屋顶形式应该采用()。[2012年6月真题]
简述好来宝的曲艺特色。
柳园社区出现了几例父母虐待儿童的事件,在该社区产生了很大的影响。社会工作者方晨针对这一问题策划服务方案。他在家访的过程中r解到受虐儿童的家属缺乏社会支持,探明了产生这一现象的原因,并且通过调查掌握了受这一问题影响的社区人群状况,制定了下一阶段工作目标。方晨
实施美育的主要途径是________。
限制MailUser邮件主机里每个用户的邮箱大小不超过10MB,如何配置?限制MaiUser邮件主机里最多允许有1000个邮件用户,如何配置?
最新回复
(
0
)