设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=

admin2019-11-25  49

问题 设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=

选项

答案当c=ai(i=1,2,…,n)时,对任意的ξ∈(a1,an),结论成立; 设c为异于a1,a2,…,an的数,不妨设a1<c<a2<…<an. 令k=[*],构造辅助函数φ(x)=f(x)-k(x-a1)(x-a2)…(x-an),显然φ(x)在[a1,an]上 n阶可导,且φ(a1)=φ(c)=φ(a2)=…=φ(an)=0, 由罗尔定理,存在ξ(1)1∈(a1,c),ξ(1)2∈(c,a2),…,ξ(1)n∈(an-1,an),使得φ’(ξ(1)1)= φ’(ξ(1)2)=…=φ’(ξ(1)n)=0,φ’(x)在(a1,an)内至少有n个不同零点,重复使用罗尔定 理,则φ(n-1)(x)在(a1,an)内至少有两个不同零点,设为c1,c2∈(a1,an),使得 φ(n-1)(c1)=φ(n-1)(c2)=0, 再由罗尔定理,存在ξ∈(c1,c2)[*](a1,an),使得φ(n)(ξ)=0. 而φ(n)(x)=f(n)(x)-n!k,所以f(n)(ξ)=n!k,从而有f(c)=[*]f(n)(ξ).

解析
转载请注明原文地址:https://jikaoti.com/ti/AviRFFFM
0

最新回复(0)