首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η*是非齐次线性方程组Ax=b的一个解,ξ1,,…,ξn-r是对应的齐次线性方程组的一个基础解系,证明:(1)η*,ξ1,…,ξn-r线性无关;(2)η*,η*+ξ1,…η*+ξn-r线性无关.
设η*是非齐次线性方程组Ax=b的一个解,ξ1,,…,ξn-r是对应的齐次线性方程组的一个基础解系,证明:(1)η*,ξ1,…,ξn-r线性无关;(2)η*,η*+ξ1,…η*+ξn-r线性无关.
admin
2020-06-05
20
问题
设η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,证明:(1)η
*
,ξ
1
,…,ξ
n-r
线性无关;(2)η
*
,η
*
+ξ
1
,…η
*
+ξ
n-r
线性无关.
选项
答案
(1)设有如下关系式成立 k
0
η
*
+k
1
ξ
1
+…+k
n-r
ξ
n-r
=0用矩阵A左乘上式两边,并注意题设条件,得 0=A(k
0
η
*
+k
1
ξ
1
+…+k
n-r
ξ
n-r
)=k
0
Aη
*
+k
1
Aξ
1
+…+k
n-r
Aξ
n-r
=k
0
b但b≠0,由上式知k
0
=0,于是有 k
1
ξ
1
+k
2
ξ
2
+…+kk
n-r
ξ
n-r
=0因向量组ξ
1
,ξ
2
,…,ξ
n-r
是对应齐次线性方程组的基础解系,从而它们线性无关,于是k
1
=k
2
=…=k
n-r
=0,由定义知η
*
,ξ
1
,ξ
2
,…,ξ
n-r
线性无关. (2)设有如下关系式成立 k
0
η
*
+k
1
(η
*
+ξ
1
)+…+k
n-r
(η
*
+ξ
n-r
)=0 整理可得 (k
0
+k
1
+…+k
n-r
)η
*
+k
1
ξ
1
+…+k
n-r
ξ
n-r
=0 由(1),向量组η
*
,ξ
1
,ξ
2
,…,ξ
n-r
线性无关,故k
1
=k
2
=…=k
n-r
=0,并且k
0
+k
1
+…+k
n-r
=0,于是k
0
=0,故向量组η
*
,η
*
+ξ
1
…,η
*
+ξ
n-r
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/At9RFFFM
0
考研数学一
相关试题推荐
设x→0时ax2+bx+c-cosx是比x2高阶的无穷小,其中a,b,c为常数,则()
设A,B是n阶方阵,A,Y,b是n×1矩阵,则方程组有解的充要条件是()
设f(x)在[0,1]二阶可导,且f’’(x)<0,则下列命题正确的是()-
设y=y(x)是二阶线性常系数非齐次微分方程y"+Py’+Qy=3e2x满足初始条件y(0)=y’(0)=0的特解,则极限=()
设A是m×n矩阵,B是n×m矩阵,则齐次线性方程组ABX=0().
设随机变量(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X与Y的相关系数为且概率P{aX+bY≤1}=,则()
设pn=,n=1,2,…,则下列命题正确的是()
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为()
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,gˊ(x)<0,试证明存在ξ∈(a,b)使
已知n阶行列式|A|=,则|A|的第k行代数余子式的和Ak1+Ak2+…+Akn=___________.
随机试题
企业形象识别系统由以下三个方面的因素构成:__________(MindIdentity,简称MI),__________(BehaviorIdentity,简称BI)和__________(VisualIdentity,简答VI)。
“中国人不打中国人”是指不用武力解决台湾问题。
关于最大摄氧量VO2[maX],不正确的概念是
男,35岁,淋雨后寒战、发热3天。胸透示右下肺炎。血WBC12.3×104/L,中性粒细胞百分比0.87。该患者感染的病原菌最可能是
大气中的粒子状态污染物中( )又称为可吸入颗粒物,易随呼吸进入人体肺脏,危害人体。
强调税收政策和制度必须以保证财政收入的取得,为政府履行职能提供物质基础为核心,以此作为税收基本职能,体现了税收的( )。
关于UCITS三号指令,下列说法错误的是()。
下列属于极端状态的市场有()。
计算∫L(xy2+y)dx+(x2y+x)dy,其中L从原点沿直线y=x到点(1,1);
Howdidtheearlypeopledotheircounting?Atfirst,theydidalltheircountingwithsmallstones.Later,theylearnedtouse
最新回复
(
0
)