首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Aχ=0的基础解系,且矩阵A-6E不可逆.则 (Ⅰ)求齐次线性方程组(A-6E)χ=0的通解: (Ⅱ)求正交变换χ=Qy将二次型χTAχ化为标准形;
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Aχ=0的基础解系,且矩阵A-6E不可逆.则 (Ⅰ)求齐次线性方程组(A-6E)χ=0的通解: (Ⅱ)求正交变换χ=Qy将二次型χTAχ化为标准形;
admin
2017-11-30
48
问题
设A为3阶实对称矩阵,α
1
=(1,-1,-1)
T
,α
2
=(-2,1,0)
T
是齐次线性方程组Aχ=0的基础解系,且矩阵A-6E不可逆.则
(Ⅰ)求齐次线性方程组(A-6E)χ=0的通解:
(Ⅱ)求正交变换χ=Qy将二次型χ
T
Aχ化为标准形;
(Ⅲ)求(A-3E)
100
。
选项
答案
(Ⅰ)因为矩阵A-6E不可逆,所以λ=6是矩阵A的一个特征值;另一方面,因为α
1
,α
2
是齐次线性方程组Aχ=0的基础解系,所以λ=0是矩阵A的二重特征值,所以A的特征值为0,0,6。 齐次线性方程组(A-6E)χ=0的通解是矩阵A的属于特征值λ=6的特征向量。因为A为3阶实对称矩阵,从而属于不同特征值的特征向量正交。 设α
3
=(χ
1
,χ
2
,χ
3
)
T
是矩阵A的属于特征值λ=6的一个特征向量,则 (α
1
,α
3
)=0,(α
2
,α
3
)=0, 解得α
3
=(-1,-2,1)
T
,所以齐次线性方程组(A-6E)χ=0的通解为kα
3
,k为任意常数。 (Ⅱ)下面将向量组α
1
,α
2
,α
3
正交化。令 β
1
=α
1
,β
2
=α
2
-[*]β
1
=(-1,0,-1)
T
,β
3
=α
3
下面将向量组β
1
,β
2
,β
3
,单位化。令 [*] 则二次型χ
T
Aχ在正交变换χ=Qy下的标准型为6y
3
2
。 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/AhVRFFFM
0
考研数学一
相关试题推荐
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
在密度为1的半球体的底面接上一个相同材料的柱体:一h≤z
设二维随机变量(X,Y)的联合密度函数为求随机变量X,Y的边缘密度函数;
设一电路由三个电子元件串联而成,且三个元件工作状态相互独立,每个元件的无故障工作时间服从参数为λ的指数分布,设电路正常工作的时间为T,求T的分布函数.
设,α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=求方程组(Ⅱ)BX=0的基础解系;
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,一1]T,ξ2=[一1,2,2]T,ξ3=[2,一1,2]T.又β=[1,2,3]T,计算:(1)Anξ;(2)Anβ.
已知由线积分+[f(x)一x2]dy与路径无关,其中f(x)有连续一阶导数,f(0)=1,则∫(0,0)(1,1)yf(x)dx+[f(x)一x2]dy等于()
设则,f(x,y)在(0,0)处()
设则f(x,y)在点0(0,0)处()
函数y=lnx在区间[1,e]上的平均值为_____
随机试题
根据监督检查与职权的关系划分,行政监督检查可分为()。
AsIlookbackonitnow,Irealizeitwaskindofsillyofmetobeworriedwhenhewasreallyjustlate.Iusedto【C1】______ev
文献法收集的资料是
中药理论博大精深,中药有五味之说。常标以辛味的药物是
全国银行间债券市场质押式回购期限最短为1天,最长为91天。()
通常将一定数量的货币在两个时点之间的价值差异称为()。
在幼儿的发展中最容易观察到的一个敏感期是()
你是市环保局的工作人员,现在单位要在两所小学开展垃圾分类宣传教育,领导让你负责,你怎么办?
设f(x)=x2+㏑x,求使得f〞(x)>0的x的取值范围.
A、Shewenttothesameuniversityashermother.B、SheworkedasanurseintheFirstWorldWar.C、ShewontheNobelPrizetwot
最新回复
(
0
)