首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且 ∫0πf(x)dx=∫0πf(x)cosxdx=0. 试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设函数f(x)在[0,π]上连续,且 ∫0πf(x)dx=∫0πf(x)cosxdx=0. 试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
admin
2017-10-23
41
问题
设函数f(x)在[0,π]上连续,且
∫
0
π
f(x)dx=∫
0
π
f(x)cosxdx=0.
试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,0≤x≤π,则有F(0)=0,F(π)=0.又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x)=F(x)cosx|
0
π
+∫
0
π
F(x)sinxdx=∫
0
π
F(x)sindx, 所以存在ξ∈(0,π),使F(ξ)sinξ=0,因若不然,则在(0,π)内F(x)sinx恒为正或恒为负,均与∫
0
π
F(x)sinxdx=0矛盾.但当ξ∈(0,π)时sinξ≠0,故F(ξ)=0. 由以上证得,存在满足0<ξ<π的ξ,使得 F(0)=F(ξ)=F(π)=0. 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,f)和ξ
2
∈(ξ,π),使 F’(ξ
1
)=F’(ξ
2
)=0,即 f(ξ
1
)=f(ξ
2
)=0.
解析
令F(x)=∫
0
x
f(t)dt,则F(0)=F(π)=0.若由条件∫
0
π
f(x)cosxdx=0能找到另一点ξ∈(0,π),使F(ξ)=0,再用两次罗尔定理即可.
转载请注明原文地址:https://jikaoti.com/ti/AeKRFFFM
0
考研数学三
相关试题推荐
设处处可导,确定常数a,b,并求f’(x)。
举例说明函数可导不一定连续可导.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得
设函数f(x)在[0,a]上连续,在(0,a)内二阶可导,且f(0)=0,f"(x)<0,则在(0,a]上().
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点,求L的方程.
求幂级数的和函数.
随机向区域D:0<y<(a>0)内扔一点,该点落在半圆内任何区域的概率与该区域的面积成正比,则落点与原点的连线与x轴的夹角小于的概率为________.
设φ(x)在[a,b]上连续,且φ(x)>0,则函数y=∫abf(t)dt|x-t|φ(t)dt的图形在(a,b)内()
设有两条抛物线y=nx2+和y=(n+1)x2+,记它们交点的横坐标的绝对值为an,求:这两条抛物线所围成的平面图形的面积Sn;
设一元函数f(x)有下列四条性质。①f(x)在[a,b]连续;②f(x)在[a,b]可积;③f(x)在[a,b]存在原函数;④f(x)在[a,b]可导。若用表示可由性质P推出性质Q,则有()
随机试题
不适宜做嵌体的有
以下选项中,属于骨质破坏的X线表现的有()。
下列环境噪声监测点布置,符合《声环境质量标准》要求的是()。
资料(一)根据童车行业的相关数据统计,童车市场潜力巨大,正释放出惊人的消费能力,而且据专家预测,随着中国2015年婴儿潮的到来,童车行业市场形势走进“春天里”是一个不争的事实。随着人们生活水平的不断提高,童车已经从“奢侈品”转向“必需品”,儿童的
陈某,男,大学生,本人来咨询。“我面临退学的危险,我很苦恼。我是大四的学生,考入重点大学也不容易,我是以高分考入大学的。入学开始学习还可以,但在升入大二时,我和一个同班的女同学比较好,谈起朋友。我对她很好。在大二下半学期,她莫名其妙地以一个不成为理由的理由
民谚有“础润而雨”的说法,作为劳动人民千百年来宝贵劳作经验的总结,它的主要科学依据体现在()的变化通过“础润”的形式表现出来,从而预示着天气的变化。
A、 B、 C、 D、 A
下面程序段的作用是从文本框中输入数据,如果该数据满足条件:除以6余2,除以5余3,则输出,否则,将焦点定位在文本框中,并清除文本框的内容。请填空。PrivateSubCommandlClick()num=Val(Textl.Tex
TryingtooHardCanSlowNewLanguageDevelopmentA)Neuroscientistshavelongobservedthatlearningalanguagepresentsadiffe
A、Someonephoned.B、Someonecame.C、Thewomanwentout.D、Thewomanphonedtheman.B男士问女士在他外出期间,有没有人打过电话;女士回答说没有人打过电话,但Cooper先生
最新回复
(
0
)