首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设随机变量X在区间[-1,2]上服从均匀分布,随机变量则方差D(Y)=__________.
假设随机变量X在区间[-1,2]上服从均匀分布,随机变量则方差D(Y)=__________.
admin
2019-05-08
55
问题
假设随机变量X在区间[-1,2]上服从均匀分布,随机变量
则方差D(Y)=__________.
选项
答案
8/9
解析
解一 为求E(Y),E(Y
2
),先利用命题3.2.3.2(3)求出P(Y=1)P(Y=-1).设X的密度为f
X
(x),则
P(Y=1)=P(X>0)=P(0
P(Y=-1)=P(X<0)=P(-1
因X为连续型随机变量,故P(X=0)=0,因而P(Y=0)=P(X=0)=0.于是得到Y和Y
2
的分布律分别为
故 E(Y)=(-1)×(1/3)+1×(2/3)=1/3, E(Y
2
)=0+1×1=1,
D(Y)=E(Y
2
)-[E(Y)]
2
=1-(1/3)
2
=8/9.
解二 由题设有
则
而P(X=0)=0,
故 E(Y)=1P(X=1)+0P(Y=0)+(-1)P(Y=-1)
=1P(X>0)+0P(X=0)+(-1)P(X<0)=2/3-1/3=1/3,
E(Y
2
)=1
2
P(Y=1)+0
2
P(Y=0)+(-1)
2
P(Y=-1)
=1
2
P(X>0)+0
2
P(X=0)+(-1)
2
P(X<0)=2/3+1/3=1.
故 D(Y)=E(Y
2
)-[E(Y)]
2
=1-(1/3)
2
=8/9.
解三 用随机变量方差的定义:
求之.
D(Y)=[1-E(Y)]
2
P(Y-1)+[0-E(Y)]
2
P(Y=0)+[-1-E(Y)]
2
P(Y=-1)
=[1-E(Y)]
2
P(X>0)+[E(Y)]
2
P(X=0)+[-1-E(Y)]
2
P(X<0)
=(4/9)×(2/3)+(1/9)×0+(16/9)×(1/3)=8/9.
注:命题3.2.3.2 (3)若X在区间[a,b]上服从均匀分布,即X~U[a,b],则X落在子区间[c,d]
[a,b]上的概率为
P(c≤X≤d)=(d-c)/(b-a).
转载请注明原文地址:https://jikaoti.com/ti/ATnRFFFM
0
考研数学三
相关试题推荐
设总体X的概率密度函数为f(x)=e—|x—μ|(一∞<x<+∞),X1,X2,…,Xn为取自总体X的简单随机样本,其样本方差为S2,则E(S2)=________。
设连续型随机变量X的分布函数F(x)=求:(Ⅰ)A和B;(Ⅱ)X的概率密度f(x)。
某车间生产的圆盘其直径服从区间(a,b)上的均匀分布,则圆盘面积的数学期望为________。
设总体X的概率分布为,其中θ(0<θ<)为未知参数,对总体抽取容量为10的一组样本,其中五个取1,三个取2,一个取0。则θ的矩估计值为________,最大似然估计值为________。
设事件A、B、C满足P(ABC)>0,则P(AB|C)=P(A|C)P(B|C)的充要条件是()
设f(x)∈C[0,1],f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
计算二重积分(x2+4x+y2)dxdy,其中D是曲线(x2+y2)2=a2(x2-y2)围成的区域.
设(n=1,2,…;an>0,bn>0),证明:(1)若级数bn收敛,则级数an收敛;(2)若级数an发散,则级数bn发散.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.(1)求导弹运行的轨迹满足的微分方程及初始条件;(2)导弹运行方程.
已知数列{x}满足:x0=25,xn=arctanxn—1(n=1,2,3,…),证明{xn}的极限存在,并求其极限.
随机试题
[*]
探测肺动脉瓣口血流多普勒频谱的最常用切面是
关于女性生理,下例哪项是错误的
拒绝明显危害用药者生命健康,违反社会伦理道德售药要求的是及时了解与执业相关的法律变化,并积极参与相关法律法规、规章的制定、修订过程是
2002年5月31日,D县水利农机局向朱某颁发了C市河道采砂许可证,该证载明采砂有效期限截止日期为2005年12月31日。2005年12月3日,朱某向D县水利农机局提交了《延长采砂期申请》。D县水利农机局做出不准予延续的决定,朱某遂向复议机关提出复议,复议
当地基土质不均匀,房屋将引起过大不均匀沉降造成房屋开裂,为了防止沉降裂缝的产生,可用( )在适当部位将房屋分成若干刚度较好的单元。
简述决策的过程。
在世界杯金靴奖的争夺中,如果斯内德没有获得金靴奖并且穆勒助攻次数比斯内德多的话,弗兰将获得金靴奖。补充以下哪项.能够推出斯内德获得了金靴奖?
新民主主义革命是新式的特殊的资产阶级民主革命,这里所说的“新”指的是()
Whycan’tSallyplay?
最新回复
(
0
)