首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2006年试题,22)已知非齐次线性方程组有3个线性无关的解.(I)证明方程组系数矩阵A的秩rA=2;(Ⅱ)求a,b的值及方程组的通解.
(2006年试题,22)已知非齐次线性方程组有3个线性无关的解.(I)证明方程组系数矩阵A的秩rA=2;(Ⅱ)求a,b的值及方程组的通解.
admin
2013-12-18
62
问题
(2006年试题,22)已知非齐次线性方程组
有3个线性无关的解.(I)证明方程组系数矩阵A的秩rA=2;(Ⅱ)求a,b的值及方程组的通解.
选项
答案
(I)用线性相关性判断秩的方法.依题意,设α
1
,α
2
,α
3
,是非齐次方程组的3个线性无关的解,则α
1
一α
2
,α
1
-α
3
是Ax=0线性无关的解.所以n—rA≥2,即rA≤2又矩阵A中有二阶子式不为0,于是rA≥2.所以秩rA=2.(Ⅱ)对增广矩阵作初等行变换,有[*]由rA=r([*])=2(已证)→a=2,b=一3又α=(2,一3,0,0)
T
是原方程组的解,η
1
=(一2,1,1,0)
T
,η
2
=(4,一5,0,1)是Ax=0的基础解系,所以原方程组的通解是[*](k
1
,k
2
为任意常数)
解析
本题考查了解线性方程组的方法,矩阵的秩和基础解系等知识点,解非齐次线性方程组,一般转化为增广矩阵的秩的问题进行求解,若rA≠r(
),则非齐次线性方程组无解;若rA=r(
)=n,则非齐次线性方程组有唯一解;若rA=r(
)
转载请注明原文地址:https://jikaoti.com/ti/AHDRFFFM
0
考研数学二
相关试题推荐
下列函数中,在x=0处不可导的是()
(94年)设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则【】
[2015年]设函数f(x)在(-∞,+∞)内连续,其二阶导数f"(x)的图形如图1.2.3.2所示,则曲线y=f(x)的拐点个数为().
(2010年)设函数f(x),g(x)具有二阶导数,且g’(x)<0.若g(x0)=a是g(x)的极值,则f(g(x))在x0取极大值的一个充分条件是()
设(I)求|A|.(Ⅱ)已知线性方程组Ax=β有无穷多解,求实数。的值,并求Ax=β的通解.
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:(Ⅰ)0≤∫axg(t)dt≤(x一a),x∈[a,b](Ⅱ)∫aa+∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
(2000年)设
(2003年)已知曲线y=x3一3a2x+b与x轴相切,则b2可以通过a表示为b2=________。
[2008年]设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记求E(T)(原题为证明T是μ2的无偏估计量);
(06年)证明:当0<a<b<π时,bsinb+2cosb+π6>asina+2cosa+πa.
随机试题
威胁水平低而机会水平高的业务,被叫做()。
下列含有两个氨基的氨基酸是
100头仔猪中有40头发病,其中20头死亡,其病死率为()
有特异性抗原受体的细胞是
土地综合分类系统一般按土地的()为具体标志进行分类。
图示坡屋面屋顶折板配筋构造正确的是()。
针对全体女性人口的妇女社会工作的内容包括( )。
阅读下面这首词,回答25-26题。念奴娇.赤壁怀古苏轼大江东去,浪淘尽,千古风流人物。故垒西边,人道是,三国周郎赤壁。乱石穿空,惊涛拍岸,卷起千堆雪。江山如画,一时多少豪杰。遥想公瑾当年,小乔初嫁了,雄姿英发。羽扇纶
Writeanessayof160-200wordsbasedonthepicturebelow.Inyouressay,youshould1)describethepicturebriefly,2)i
Theearth’satmosphererecordedthehugedeclineinthepopulationofthewesternhemisphereinthe150yearsasfollowingthea
最新回复
(
0
)