首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量α1,α2,…,αm(m<n)线性无关,证明:n维向量β1,β2,…,βm线性无关的 充要条件是矩阵A=(α1,α2,…,αm)与矩阵B=(β1,β2,…,βm)等价. 55.设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是
设n维向量α1,α2,…,αm(m<n)线性无关,证明:n维向量β1,β2,…,βm线性无关的 充要条件是矩阵A=(α1,α2,…,αm)与矩阵B=(β1,β2,…,βm)等价. 55.设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是
admin
2017-06-14
31
问题
设n维向量α
1
,α
2
,…,α
m
(m<n)线性无关,证明:n维向量β
1
,β
2
,…,β
m
线性无关的
充要条件是矩阵A=(α
1
,α
2
,…,α
m
)与矩阵B=(β
1
,β
2
,…,β
m
)等价.
55.设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
选项
答案
必要性.若β
1
,β
2
,…,β
m
线性无关,则r(α
1
,α
2
,…,α
m
)=r(β
1
,β
2
,…,β
m
)=m. 由于矩阵的秩就是其列向量组的秩,所以r(A)=r(B),又A与B均为n×m矩阵,故A与B等价. 充分性.若A与B等价,则r(A)=r(B),因为α
1
,α
2
,…,α
m
线性无关,有r(A)=m. 于是r(β
1
,β
2
,…,β
m
)=m,所以β
1
,β
2
,…,β
m
线性无关. 13题中的条件仅为充分条件,而非必要条件,如 [*] 与α
1
,α
2
不等价,但β
1
,β
2
线性无关. 向量组的等价与矩阵的等价是两个不同的概念.前者表明两个向量组可以互相线性表出,而后者是经初等变换可由一个矩阵变成另一个矩阵.当两个向量组的向量个数-样时,由向量组的等价可得矩阵(α
1
,α
2
,…,α
m
)与(β
1
,β
2
,…,β
m
)等价,但矩阵的等价推不出向量组等价.
解析
转载请注明原文地址:https://jikaoti.com/ti/A0wRFFFM
0
考研数学一
相关试题推荐
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.
微分方程xy’+2y=xlnx满足y(1)=-1/9的解为__________.
设a=(1,0,-1)T,矩阵A=aaT,n为正整数,则|aE-An|=___________.
设A为m阶实对称矩阵,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
设f(x)为[0,1]上的单调增加的连续函数,证明
(2007年试题,24)设总体X的概率密度为X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.判断是否为θ2的无偏估计量,并说明理由.
(2000年试题,十)设矩阵A的伴随矩阵且ABA-1=BA-1+3E,其中E为4阶单位矩阵,求矩阵B.
已知矩阵和试判断矩阵A和刀是否相似,若相似则求出可逆矩阵P,使P-1AP=B,若不相似则说明理由.
随机试题
TheancientEgyptiansaresupposed______rocketstothemoon.
简述肾素-血管紧张素-醛固酮系统。
十二指肠后壁溃疡最常发生的并发症是
硫脲类抗甲状腺药最严重的不良反应是()。
在战略控制中,通常利用统计分析报告。统计分析报告以图表和文章式等多种形式表达统计分析结果,其特点有()。
两条江为钱塘江的上游,风光绚丽,被古人誉为“奇山异水,天下独绝”,是我国最佳风景区之一。()
______是通过学习形成的、影响个人行为选择的内部准备状态或反应的倾向性。
中国的民主化进程是关系到13亿中国人民切身利益的事。民主,意味着公民在公共事务中有着广泛的参与权、最后的决定权。随着中国经济改革的进行,民主化的潮流也在涌动。中国民主化给人印象深刻的一点是基层民主,特别是中国许多地方的村委会、居委会成员的竞争性直接选举,引
只有年满十八岁,才有选举权,李四已满十八岁,则()。
已知随机变量X1与X2的概率分布,而且P{X1X2=0}=1.(1)求X1与X2的联合分布;(2)问X1与X2是否独立?为什么?
最新回复
(
0
)