首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12. (1)求a,b的值; (2)利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12. (1)求a,b的值; (2)利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
admin
2018-07-26
47
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.
(1)求a,b的值;
(2)利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
1 (1)二次型f的矩阵为 [*] 设A的特征值为λ
1
,λ
2
,λ
3
,则由题设,有 [*] 由此解得a=1,b=2. (2)由A的特征多项式 [*] =(λ-2)
2
(λ+3) 得A的特征值为λ
1
=λ
2
=2,λ
3
=-3. 对于λ
1
=λ
2
=2,解齐次线性方程组(2E-A)x=0,由 [*] 得基础解系 ξ
1
=(0,1,0)
T
,ξ
2
=(2,0,1)
T
. 对于λ
3
=-3,解齐次线性方程组(-3E-A)x一0,由 [*] 得基础解系 ξ
3
=(1,0,-2)
T
. ξ
1
,ξ
2
,ξ
3
已是正交向量组,将它们单位化,得 [*] 二次型f在正交变换x=py下的标准形为 f=2y
1
2
+2y
2
2
-3y
3
2
. 2 (1)f的矩阵为 [*] A的特征多项式为 [*] =(λ-2)[λ
2
-(a-2)λ-(2a+b
2
)]. 设A的特征值为λ
1
,λ
2
,λ
3
,则 λ
1
=2,λ
2
+λ
3
=a-2,λ
2
λ
3
=-(2a+b
2
), 由题设得 [*] 解之得a=1,b=2. (2)由(1)可得A的特征值为λ
1
=λ
2
=2,λ
3
=-3.以下同解1.
解析
转载请注明原文地址:https://jikaoti.com/ti/9xIRFFFM
0
考研数学三
相关试题推荐
设随机变量X~B,Y~E(1),且X与Y相互独立.记Z=(2X-1)Y,(Y,Z)的分布函数为F(y,z).试求:(Ⅰ)Z的概率密度fZ(z);(Ⅱ)F(2,-1)的值.
已知A=,其中a1,a2,…,an两两不等.证明与A可交换的矩阵只能是对角矩阵.
设函数f(u,v)具有二阶连续偏导数,函数g(y)连续可导,且g(y)在y=1处取得极值g(1)=2.求复合函数z=f(xg(y),x+y)的二阶混合偏导数在点(1,1)处的值.
设随机变量X的分布律为求X的分布函数F(x),并利用分布函数求P{2<X≤6},P{X<4},P{1≤X<5}.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
随机试题
根据AJCC调查工期恶性黑色素瘤患者5年生存率约为
酶能加速化学反应的进行,其原理是
原发性肾小球疾病的发病机制,多数是
下列说法正确的是:()
按招标投标法的规定,建设工程项目中可以不进行招标的是()。
某房地产企业同时有两个房地产项目的投资机会,每个项目又有若干个投资方案可供选择。在资金有限的情况下,该企业选择的类型属于()型方案。
(2013年)根据国内信用证法律制度的规定,开证行收到受益人开户行寄交的委托收款凭证、单据等材料,并与信用证条款核对无误后,若发现开证申请人交存的保证金和存款账户余额不足以支付信用证金额的,开证行应采取的正确做法是()。
2019年1月2日,习近平在《告台湾同胞书》发表40周年纪念会上的讲话中指出,“祖国必须统一,也必然统一。”“两岸中国人、海内外中华儿女理应共担民族大义、顺应历史大势,共同推动两岸关系和平发展、推进祖国和平统一进程。”维护和推进祖国统一需要做到
【S1】【S6】
Directions:Forthispart,youareallowed30minutestowriteacompositionwiththetitleofLivingExpenditureofaDeveloped
最新回复
(
0
)