已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是( )

admin2020-03-02  19

问题 已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是(    )

选项 A、k1α1+k212)+
B、k1α1+k212)+
C、k1α1+k212)+
D、k1α1+k212)+

答案B

解析 对于A、C选项,因为

所以选项A、C中不含有非齐次线性方程组Ax=b的特解,故均不正确。
    对于选项D,虽然β12是齐次线性方程组Ax=0的解,但它与α1不一定线性无关,故D也不正确,所以应选B。
    事实上,对于选项B,由于α1,α12与α1,α2等价(显然它们能够互相线性表示),故α1,α12
也是齐次线性方程组的一组基础解系,而由

可知是齐次线性方程组Ax=b的一个特解,由非齐次线性方程组的通解结构定理知,B选项正确。
转载请注明原文地址:https://jikaoti.com/ti/9tCRFFFM
0

最新回复(0)