首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求A的特征值与特征向量;
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 求A的特征值与特征向量;
admin
2018-04-12
44
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解。
求A的特征值与特征向量;
选项
答案
因为矩阵A的各行元素之和均为3,所以[*],则由特征值和特征向量的定义知,λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量,对应λ=3的全部特征向量为kα,其中k是不为零的常数。 又由题设知Aα
1
=0,Aα
2
=0,即Aα
1
=0.α
1
,Aα
2
=0.α
2
,而且α
1
,α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量,对应λ=0的全部特征向量为k
1
α
1
+k
2
α
2
,其中k
1
,k
2
为不全为零的常数。
解析
线性方程组Ax=0的解即为特征值0的特征向量,矩阵的各行元素之和为3等价于A(1,1,1)
T
=(3,3,3)
T
=3(1,1,1)
T
,从而得到(1,1,1)
T
是A的特征向量,对应的特征值为3。
转载请注明原文地址:https://jikaoti.com/ti/9idRFFFM
0
考研数学二
相关试题推荐
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f(x)单调减少;且f(1)=f’(1)=1,则
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ζ,使f"’(ζ)=3.
设D是位于曲线下方、x轴上方的无界区域.当a为何值时,y(a)最小?并求此最小值.
设y=e-x是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解。
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数n的值;
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
(I)利用行列式性质,有[*]
求证:元素均为1或-1的n(n≥2)阶行列式D的值为偶数.
随机试题
打牌对于()相当于()对于疲劳
下列哪一行政发展模式的主要特征表现为公共管理方式的根本性变革【】
脊椎结核的病理分型为___________和___________两类。
咽喉红肿高突,疼痛剧烈,但未化脓属()咽喉娇红疼痛,咽干不适,反复发作属()
人民警察应当具有强健的体魄,不仅要有良好的体力,还要有速度、耐力、灵活性、敏捷性。()
下列药材属于同一类的是()。
有些人坚信飞碟是存在的。理由是,谁能证明飞碟不存在呢?下列选项中,哪一项与上文的论证方式是相同的?
概念A与概念B之间有交叉关系,当且仅当:(1)存在对象X,X既属于A又属于B;(2)存在对象Y,Y属于A但不属于B;(3)存在对象Z,属于B但不属于A。根据上述定义,以下哪项中划线的两个概念之间有交叉关系?
IPv6协议是为下—代互联网而设计的互联协议,其地址长度为_______。
Thedoctorsuggested________moreexercise.
最新回复
(
0
)