首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×m矩阵,则( ).
设A是m×n矩阵,B是n×m矩阵,则( ).
admin
2019-05-10
32
问题
设A是m×n矩阵,B是n×m矩阵,则( ).
选项
A、当m>n时,必有行列式∣AB∣≠0
B、当m>n时,必有行列式∣AB∣=0
C、当n>m时,必有行列式∣AB∣≠0
D、当n>m时,必有行列式∣AB∣=0
答案
B
解析
证秩(AB)<m或证ABX=0有非零解(利用命题2.1.2.7)证之.
解一 利用矩阵秩和乘积矩阵秩的两不大于的法则确定正确选项.因AB为m阶矩阵,行列式∣AB∣是否等于零取决于其秩是否小于m.利用矩阵秩的两不大于法则得到:(1)当m>n时,有秩(A)≤min{m,n)=n<m,秩(B)≤min{m,n}=n<m;(2)秩(AB)≤min(秩(A),秩(B)}<m,而AB为m阶矩阵,故∣AB∣=0.仅(B)入选.
解二 因BX=0的解必是ABX=0的解.而BX=0是n个方程m个未知数的齐次线性方程组.当m>n时,BX=0有非零解,从而ABX=0有非零解,故∣AB∣=0.仅(B)入选.
转载请注明原文地址:https://jikaoti.com/ti/9WLRFFFM
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上二阶可导,且f〞(χ)>0,取χi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1χ1+k2χ2+…+knχn)≤k1f(χ1)+k2f(χ2)+…+knf(χn).
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设n阶矩阵A满足A2+A=3E,则(A-3E)-1=_______.
设f(u)可导,y=f(χ2)在χ0=-1处取得增量△χ=0.05时,函数增量△y的线性部分为0.15,则f′(1)=_______.
设α1,α2,…,αs为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αs线性无关.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
设。计算行列式|A|;
设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=_________。
设A=,计算行列式|A|.
随机试题
_______是提供报社、电台、电视台编写新闻消息的文字材料,它不直接同公众见面,要经过记者的加工。
血虚头痛的特点为肝阳头痛的特点为
患者,男性,66岁,因心房纤维颤动入院,护士在测脉搏前推断患者的脉搏最可能为
普通股股东可以享有的权利有()。
我国的国有商业银行经过股份制改造并成功上市,目前开展经营活动的主要目的是()。
某产品的单位变动成本因耗用的原材料涨价而提高了1元,企业为抵消该变动的不利影响,决定提高产品售价1元,假设其他因素不变,则()。
素食的风味特点包括()。
2005年一2010年,A城市的进出口总额增长率最高值与最低值相差约()。
试用多因素设计研究人的因素对汽车驾驶的影响。
EvenIntelligentPeopleCanFail1Thestrikingthingabouttheinnovatorswhosucceededinmakingourmodernworldishowoft
最新回复
(
0
)