首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2017-06-26
42
问题
设矩阵A=
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
A的特征多项式为 [*] (1)若λ=2是f(λ)的二重根,则有(λ
2
-8λ+18+3a)|
λ=2
=2
2
-16+18+3a=3a+6=0,解得a=-2. 当a=-2时,A的特征值为2,2,6,矩阵2E-A=[*]的秩为1,故对应于二重特征值2的线性无关特征向量有两个,从而A可相似对角化. (2)若λ=2不是f(λ)的二重根,则λ
2
-8λ+18+3a为完全平方,从而18+3a=16,解得a=-[*]. 当a=-[*]时,A的特征值为2,4,4, 矩阵4E-A=[*]的秩为2, 故A的对应于特征值4的线性无关特征向量只有一个,故A不能相似于对角矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/9LSRFFFM
0
考研数学三
相关试题推荐
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
设A为3阶矩阵,a1,a2为A的分别属于特征值-1、1的特征向量,向量a3满足Aa3=a2+a3,(Ⅰ)证明a1,a2,a3线性无关;(Ⅱ)令P=(a1,a2,a3,求P-1AP.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(Ⅰ)存在η∈(1/2,1),使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设A为三阶方阵,A1,A2,A3表示A中三个列向量,则|A|=().
设a0=1,a1=7/2,an+1=-(1+(1/n+1))an,n≥2,证明:当|x|<1时,幂级数收敛,并求其和函数S(x).
设n阶方程A=(a1,a2,…,an),B=(β1,β2,…,βn),AB=(γ1,γ2,γn),记向量组(Ⅰ):a1,a2,…,an(Ⅱ):β1,β2,…,βn,(Ⅲ):γ1,γ2,…,γn,如果向量组(Ⅲ)线性相关,则().
设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y与Z的相关系数为__________.
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中求:(A一3E)6.
已知实二次型f(x1,x2,x3)=a(x11+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
设X1,X2,…,Xm与Y1,Y2,…,YN分别为来自相互独立的标准正态总体X与Y的简单随机样本,令则D(Z)=______.
随机试题
求积分
运动性疲劳的两种主观评价方法是()。
UNIX采用的存储管理方式为
动眼神经病变可出现脑桥出血可出现
男性,60岁,反复咳嗽、咳痰15年,加重伴发热3天。吸烟史30年,1包/日。胸片示双肺紊乱增粗紊乱,肺功能检查示用药后FEV1/FVC62.5%,FEV1占预计值的50%,支气管舒张试验FEV1改善10%(150ml),该患者最可能的诊断是
关于氨基甲酸酯类药物中毒后解救的说法中,不正确的是
施工合同订立后,发包人有确切证据证明承包人经营状况严重恶化,拒绝支付预付款,这时发包人可行使( )。
一个生而失聪的儿童,不可能发展其听觉能力而成为音乐家。()
TheaverageBritishpeoplegetsix-and-a-halfhours’sleepanight,accordingtotheSleepCouncil.Ithasbeenknownforsomet
StayingSmart:AdviceonNavigatingYourCareerMillionsofcareerchangesoccureachyear.Somearenatural,butmanymore
最新回复
(
0
)