首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量α不是二阶方阵A的特征向量. 若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设二维非零向量α不是二阶方阵A的特征向量. 若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
admin
2018-05-21
16
问题
设二维非零向量α不是二阶方阵A的特征向量.
若A
2
α+Aα-6α=0,求A的特征值,讨论A可否对角化;
选项
答案
由A
2
α+Aα-6α=0,得(A
2
+A-6E)α=0, 因为α≠0,所以r(A
2
+A-6E)<2,从而|A
2
+A-6E|=0,即 |3E+A|.|2E-A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)α=0,得 (2E-A)α=0,即Aα=2α,矛盾; 若|2E-A|≠0,则2E-A可逆,由(2E-A)(3E+A)α=0,得 (3E+A)α=0,即Aα=-3α,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩阵A有两个特征值-3,2,故A可对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/9FVRFFFM
0
考研数学一
相关试题推荐
设A是n阶矩阵,|A|=2,若矩阵A+E不可逆,则A*必有特征值________.
设总体X的分布函数为X1,X2,…,X10为来自总体X的简单随机样本,其观察值为1,1,3,1,0,0,3,1,0,1.(Ⅰ)求总体X的分布律;(Ⅱ)求参数θ的矩估计值;(Ⅲ)求参数θ的极大似然估计值.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
设f(x),g(x)具有二阶连续导数,且[y2f(x)+2yex+2yg(x)]dx+2[yg(x)+f(x)]dy=0,其中L为平面上任意简单闭曲线.(Ⅰ)求f(x)和g(x),其中f(0)=g(0)=0;(Ⅱ)计算沿任一条曲线从点(0,0)到点(
设A,B是n阶可逆矩阵,满足AB=A+B,则下面命题中正确的个数是()①|A+B|=|A||B|②(AB)一1=B一1A一1③(A—E)x=0只有零解④B—E不可逆
设X1,X2,…,Xn是取自二项总体B(5,)的简单随机样本,是其样本均值,则
某商场销售某种型号计算机,只有10台,其中有3台次品,现已售出2台.某顾客又来到该商场购买此种型号计算机.若该顾客买4台,以X,Y表示4台计算机中次品数与正品数,求4台中次品数的数学期望,并求协方差cov(X,Y).
设X1,X2,…,Xn是来自总体X的简单随机样本,且总体X的密度函数为求θ的极大似然估计量
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有成为熟练工.设第n年1月份统计的熟练工与非熟练工所占百分比分别为χn和yn,记成向量.(1
随机试题
患者,大便艰涩,排出困难,小便清长,面色白,四肢不温,喜热怕冷,腹中冷痛,或有腰脊酸冷,舌淡苔白,脉象沉迟。病机是
与2%普鲁卡因比较.以下哪项不是2%利多卡因的特点
【背景资料】某工业建筑施工项目,在测量管理工作中,发生了以下事件:一、施工方依据测绘部门提供的放线成果、红线桩及场地控制网,测定了建筑物位置主控轴线、建筑物±0.000绝对高程等;二、施工单位在完成施工测量方案、红线桩校核成果、水准点引测成果及施工过程中
工程项目承包模式中,建设单位组织协调工作量小,但风险较大的是()。
对于按计算工期绘制的双代号时标网络图,下列说法中错误的是()。
旁站监理是指监理机构按照监理合同规定,在施工现场对工程项目的()的施工,实施连续性的全过程检查与监督。
不属于税务机关税务管理三项制度的是( )。
简述仓库盘点作业的内容。
TheTheoryofContinentalDrifthashadalongandturbulenthistorysinceitwasfirstproposedbyAlfredWegenerin1910.【F1】V
Austinhadmadenogrammarmistakesinhisthesispaper,but______hadhewellpreparedforit.
最新回复
(
0
)