首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关; (2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关; (2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分
admin
2019-01-05
48
问题
(1)设λ
1
,λ
2
,…,λ
n
是n阶矩阵A的互异特征值,α
1
,α
2
,…,α
n
是A的分别对应于这些特征值的特征向量,证明α
1
,α
2
,…,α
n
线性无关;
(2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ
1
,λ
2
,…,λ
n
互异,α
i
分别是方程组(A—λ
i
B)x=0的非零解,i=1,2,…,n.证明α
1
,α
2
,…,α
n
线性无关.
选项
答案
(1)用数学归纳法. ①由特征向量α
1
≠0,故α
1
线性无关; ②假设前k一1个向量α
1
,α
2
,…,α
k-1
线性无关,以下证明α
1
,α
2
,…,α
k
线性无关.k个互异特征值λ
1
,λ
2
,…,λ
k
对应着特征向量α
1
,α
2
,…,α
k
.现设存在一组数l
1
,l
2
,…,l
k
,使得 l
1
α
1
+l
2
α
2
+…+l
k
α
k
=0, (*) 在(*)式两端左边乘A,有l
1
Aα
1
+l
2
Aα
2
+…+l
k
Aα
k
=0,即 l
1
λ
1
α
1
+l
2
λ
2
α
2
+…+l
k
λ
k
α
k
=0. (**) 又在(*)式两端左边乘λ
k
,有l
1
λ
1
α
1
+l
2
λ
2
α
2
+…+l
k
λ
k
α
k
=0. (***) 用(**)式减去(***)式,得 l
1
(λ
1
—λ
k
)α
1
+l
2
(λ
2
一λ
k
)α
2
+…+l
k-1
(λ
k-1
一λ
k
)α
k-1
=0. 由归纳假设α
1
,α
2
,…,α
k-1
线性无关,故 l
1
(λ
1
一λ
k
)=l
2
(λ
2
一λ
k
)=…=l
k-1
(λ
k-1
一λ
k
)=0, 又λ
i
—λ
k
≠0(i=1,2,…,k一1),故l
1
=l
2
=…=l
k-1
=0. 代回(*)式,于是l
k
α
k
=0,由α
k
≠0,有l
k
=0,于是α
1
,α
2
,…,α
k
线性无关. 即A的n个互异特征值对应的特征向量α
1
,α
2
,…,α
n
线性无关. (2)由|B|≠0,在|A一λB|=0两端左边乘|B
-1
|,有 |B
-1
A一λE|=0,即|λE一B
-1
A|=0, 于是λ
1
,λ
2
,…,λ
n
是矩阵B
-1
A的n个互异特征值. 又由(A-λ
i
B)x=0,两端左边乘B
-1
,有 (B
-1
A—λ
i
E)x=0,即(λ
i
E一B
-1
A)x=0,故α
1
,α
2
,…,α
n
为B
-1
A的对应于λ
1
,λ
2
,…,λ
n
的特征向量,由(1)知,α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/97IRFFFM
0
考研数学三
相关试题推荐
求微分方程y’’+y’一2y—xex+sin2x的通解.
求二重积,其中D={(x,y)|0≤y≤1-x,0≤x≤1}.
设随机变量X服从参数为λ的指数分布,令求:P{X+Y=0);
设A为三阶矩阵,α1,α2,α3是三维线性无关的向量组,且Aα1=α1+3α2,Aα2=5α1一α2,Aα3=α1一α2+4α3.求矩阵A的特征值;
设A为三阶实对称矩阵,若存在正交矩阵Q,使得且A*α=α.(I)求正交矩阵Q;(Ⅱ)求矩阵A.
设抛物线y=x2与它的两条相互垂直的切线所围成的平面图形的面积为S,其中一条切线与抛物线相切于点A(a,a2)(a>0).当a取何值时,面积S(A)最小?
设X1,X2,X3,…,Xn是来自正态总体N(μ,σ2)的简单随机变量,X是样本均值,记S1=.则服从自由度为n-1的t分布的随机变量为().
设随机变量X的概率密度为对X作两次独立观察,设两次的观察值为X1,X2,令求常数a及P{X1<0,X2>1);
10件产品中有3件产品为次品,从中任取2件,已知所取的2件产品中至少有一件是次品,则另一件也为次品的概率为__________.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A.
随机试题
Thisis______thelatestexampleofgovernmentinterference.
采血前需对采血袋进行检查,其检查内容包括
A.单个浅表溃疡B.肠壁全层的结核杆菌浸润C.多发浅表溃疡D.肉芽肿形成E.干酪样坏死并组织癌变溃疡型肠结核病理特征是
乳牙继发龋的特点是
男性,9岁,尿少浮肿1天。体检:眼睑部浮肿,血压140/100mmHg,尿蛋白(+),尿红细胞(+++)。该患儿诊断是
下列特征中,属于商誉特征的是()。
国家农业发展银行所承担的任务是()。
日本政府最近发起一项新的运动,()家庭关掉电视,提醒人们不要迷失在小屏幕前,应该多去户外活动。
对于舆情应对,政府不可谓不重视,但“信息不透明,手段不科学,态度不诚恳"却是某大学教授总结出的政府应对舆情危机的三大弊病。例如,面对民生问题中的种种质疑,有关部门的回应却常常让人觉得“雾里看花”。在塑化剂排查中称“抽检的140多份方便面样品,未发现人为添
Nowadays,incominggenerationsreallyrelyonthepowerofthe"Internet"whenitcomestosearchingforinformation.Justtype
最新回复
(
0
)