首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A是n阶正定矩阵,证明:A﹣1是正定矩阵.
已知矩阵A是n阶正定矩阵,证明:A﹣1是正定矩阵.
admin
2020-06-05
24
问题
已知矩阵A是n阶正定矩阵,证明:A
﹣1
是正定矩阵.
选项
答案
因为A正定,所以A
T
=A,那么(A
﹣1
)
T
=(A
T
)
﹣1
=A
﹣1
,于是A
﹣1
是对称矩阵. 方法一 (用特征值)设矩阵A
﹣1
的特征值是λ
1
,λ
2
,…,λ
n
,则矩阵A的特征值是[*].由A正定,知其特征值[*]﹥0(i=1,2,…,n),从而矩阵A
﹣1
的特征值是λ
i
﹥0(i=l,2,…,n)全大于0.因此矩阵A
﹣1
正定. 方法二 因为矩阵A正定,故存在可逆矩阵C使C
T
AC=E,那么 (C
T
AC)
﹣1
=C
﹣1
A
﹣1
(C
T
)
﹣1
=C
﹣1
A
﹣1
(C
﹣1
)
T
=E 所以A
﹣1
与E合同,故A
﹣1
正定. 方法三 (用定义)注意到对于任意非零向量x,有 x
T
A
﹣1
x=x
T
(A
﹣1
AA
﹣1
)x=(x
T
A
﹣1
)A(A
﹣1
x)=(A
﹣1
x)
T
A(A
﹣1
x)﹥0(A
﹣1
x≠0) 从而A
﹣1
正定. 方法四 因为A正定,那么A对称且可逆,于是A
T
A
﹣1
A=A,所以A
﹣1
与A合同,进而二次型x
T
Ax与x
T
A
﹣1
x有相同的正、负惯性指数.因此,由x
T
Ax是正定二次型,可知x
T
A
﹣1
x也为正定二次型,故A
﹣1
正定.
解析
转载请注明原文地址:https://jikaoti.com/ti/8E9RFFFM
0
考研数学一
相关试题推荐
设f(u)连续,则d2/dx2∫0xdu∫u1vf(u2-v2)dv=_______.
设A,B为n阶矩阵,则下列结论正确的是().
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为()
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设齐次线性方程组的系数矩阵为A,且存在3阶方阵B≠O,使AB=O,则
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为()
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
随机试题
理想信念之所以能够成为一种推动人生实践和社会生活的巨大力量,就是由于它
什么是唐传奇?唐传奇创作分哪几个时期?有哪些代表作家和作品?
_______又称为存储单元,是工作表中整体操作的基本单位。
原发性扩张型心肌病在超声心动图上有什么表现?
A、天南星B、桔梗C、旋覆花D、半夏E、白芥子治风痰所致的眩晕,中风口眼歪斜,癫痫,破伤风用()
IBM是一个巨大的公司,很自然地要划分部门。单一地按照区域地域、业务职能、客户群落、产品或产品系列等来划分部门,在企业里是非常普遍的现象,从前的IBM也不例外。但是近几年来。IBM公司把多种划分部门的方式有机地结合起来,其组织结构形成了“活着的”立体网络。
一件专利申请公开了一种组合物,该组合物由植物材料A经过步骤X、Y和Z加工处理制得,并公开了该组合物可用来杀菌。该申请的申请日为2004年6月1日。一篇2003年3月1日公开的文献记载了一种由植物材料A经过步骤X、Y和Z加工处理制得的染料组合物,该文献没有公
以下佛塔中,属于密檐式塔的有()。
《星岛日报》
A、Heoftenborrowsmoneyfromothers.B、Hehasjustreceivedhismonthlypay.C、Hecan’tpayoffhiscreditcards.D、Hehaskept
最新回复
(
0
)