首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年试题,24)设三阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,又α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A2一4A3+E,其中E为三阶单位矩阵. (I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)
(2007年试题,24)设三阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,又α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A2一4A3+E,其中E为三阶单位矩阵. (I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)
admin
2014-08-19
47
问题
(2007年试题,24)设三阶对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,又α
1
=(1,一1,1)
T
是A的属于λ
1
的一个特征向量.记B=A
2
一4A
3
+E,其中E为三阶单位矩阵.
(I)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B.
选项
答案
(I)容易验证A
1
n
α
1
=λ
1
n
α
1
(n=1,2,…),于是Bα
1
=(A
5
一4A
3
+B)α
1
=(λ
1
5
一4λ
1
3
+1)α
1
=一2α
1
于是一2是矩阵B的特征值,k
1
α
1
是B属于特征值一2的全部特征向量(k
1
∈R,非零).同理可求得矩阵B的另外两个特征值1,1.因A为实对称矩阵,则B也为实对称矩阵,于是矩阵曰属于不同特征值的特征向量正交.设B的属于1的特征向量为(x
1
,x
2
,x
3
)
T
,则有方程x
1
一x
2
+x
3
=0于是求得B的属于1的全部特征向量为β=k
2
α
2
+k
3
α
3
,其中α
2
=(一1,0,1)
T
,α
3
=(1,1,0)
T
,k
2
,k
3
∈R,不全为零.(Ⅱ)令矩阵P=(α
1
,α
2
,α
3
)=[*]则P
-1
BP=diag(一2,1,1),于是[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/7zDRFFFM
0
考研数学二
相关试题推荐
设A为三阶矩阵,为非齐次线性方程组AX=的解,则()。
下列命题正确的是()。
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1)。证明:存在ξ∈(0,1),使得2∫01f(x)dx=f(0)+f(1)+。
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是()。
设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为-1.证明:存在ξ∈(0,1),使得fn(ξ)≥8。
设A为3阶实对称矩阵,已知|A|=-12,A的三个特征值之和为1,又α=(1,0,-2)T是齐次线性方程组(A*-4E)X=0的一个解向量。(1)求矩阵A;(2)求方程组(A*+6E)X=0的通解。
设f0(x)是[0,+∞)上的连续的单调增加函数,函数f1(x)=∫0xf0(t)dt/x,(1)补充定义f1(x)在x=0的值,使得补充定义后的函数(仍记为f1(x))在[0,+∞)上连续;(2)在(1)的条件下,证明f1(x)<f0
设A是n阶矩阵,证明:(I)r(A)=1的充分必要条件是存在n阶非零列向量a,β,使得A=aβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
(Ⅰ)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似.(Ⅱ)设,求可逆矩阵P,使得P﹣1AP=B.
随机试题
脑电图
A.假膜性炎B.增生性炎C.卡他性炎D.坏死性炎急性细菌性痢疾的特征性病变是
Cancerisconsideredamoderndisease,thoughitwasnotunknowninancienttimes.(TheconditionwasnamedbytheGreeksfromth
单采浓缩血小板的数量每袋为
A.大气压力B.吸附力C.牵张力D.附着力E.粘着力不同分子之间的吸引力被称为
下列管理职能中,具有主体广泛性特点的是()。
根据《招投标法》,由建设单位指定的5名行政领导和1名技术专家组成的评标委员会,存在的错误有()。
人民警察的义务来源于()。
目前,我国正在进行文化体制改革与经济结构调整,发展文化经济有助于经济结构调整。换言之,_______。文化发展了,经济也就转型升级了,文化份额的增加和文化产品质量的提高对一个国家和地区经济的转型升级有巨大的直接作用。填入画横线部分最恰当的一句是:
Theprovisionofpositiveincentivestoworkinthenewsocietywillnotbeaneasytask.【F1】Butthemostdifficulttaskofall
最新回复
(
0
)