首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是 η1=(1,3,0,2)T,η2=(1,2,一1,3)T, 又知齐次方程组Bx=0的基础解系是 β1=(1,1,2,1)T,β2=(O,一3,1,a)T, (I)求矩阵A; (Ⅱ)如果齐次线性方程组Ax=
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是 η1=(1,3,0,2)T,η2=(1,2,一1,3)T, 又知齐次方程组Bx=0的基础解系是 β1=(1,1,2,1)T,β2=(O,一3,1,a)T, (I)求矩阵A; (Ⅱ)如果齐次线性方程组Ax=
admin
2020-05-16
50
问题
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是
η
1
=(1,3,0,2)
T
,η
2
=(1,2,一1,3)
T
,
又知齐次方程组Bx=0的基础解系是
β
1
=(1,1,2,1)
T
,β
2
=(O,一3,1,a)
T
,
(I)求矩阵A;
(Ⅱ)如果齐次线性方程组Ax=0与Bx=0有非零公共解,求a的值并求公共解.
选项
答案
(Ⅰ)记C=(η
1
,η
2
),由AC=A(η
1
,η
2
)=0知C
T
A
T
=0,则矩阵A
T
的列向量(即矩阵A的行向量)是齐次线性方程组C
T
x=0的解.对C
T
作初等行变换,有 [*] 得到C
T
x=0的基础解系为α
1
=(3,一1,1,0)
T
,α
2
=(一5,1,0,1)
T
. 所以矩阵[*] (Ⅱ)设齐次线性方程组Ax=0与Bx=0的非零公共解为γ,则γ既可由η
1
,η
2
线性表出,也可由β
1
,β
2
线性表出,故可设 γ=x
1
η
1
+x
2
η
2
=-x
3
β
1
一x
4
β
2
, 于是 x
1
η
1
+x
2
η
2
+x
3
β
1
+x
4
β
2
=0. 对(η
1
,η
2
,β
1
,β
2
)作初等行变换,有 [*] 当a=0时,解出x
4
=t,x
3
=一t,x
2
=一t,x
1
=2t. 因此Ax=0与Bx=0的公共解为γ=2tη
1
—tη
2
=t(1,4,1,1)
T
,其中t为任意常数。
解析
转载请注明原文地址:https://jikaoti.com/ti/7gaRFFFM
0
考研数学三
相关试题推荐
设X,Y相互独立且都服从标准正态分布,则E|X一Y|=________,D|X一Y|=________.
设幂级数anxn的收敛半径为3,则幂级数nan(x一1)n+1的收敛区间为___________。
设一阶非齐次线性微分方程yˊ+p(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=________.
设二次型f(x1,x2,x3)=xTAx的秩为1,A的各行元素之和为3,则f在正交变换x=Qy下的标准形为_________.
设M=f(x,y,z),φ(x2,ey,z)=0,y=sinx确定了函数u=u(x),其中f,φ都有一阶连续偏导数,且
设随机变量x服从几何分布G(θ,其中0<θ<1,若P{X≤2}=,则P{X=3}=________。
设随机变量x的绝对值不大于1,。在事件{一1<X<1}出现的条件下,X在区间(一1,1)内的任一子区间上取值的条件概率与该子区间的长度成正比。试求X的分布函数F(z)=P(X≤x)。
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
e2005.所求极限的函数为幂指函数,先用换底法将其化为以e为底的指数函数,再用等价无穷小代换:ln(1+f(x))~f(x)(f(x)→0)求其极限.故原式=e2005.
随机试题
有机防火堵料应具备的基本功能有()。
左思在《咏史》(其一)中写“著论准《过秦》”,那么《过秦论》的作者是()
下列关于会计政策、会计估计变更以及会计差错更正的表述中,正确的是()。
站在监理的角度,( )属于近外层协调。
编制施工成本计划应满足()等的要求。
机械加压送风机的余压值应满足防烟楼梯间、封闭楼梯间与走道之间的压差应为()。
职工和单位住房公积金的缴纳比例均不得低于职工上一年度月平均工资的()。
下列有关PPS抽样的说法中,正确的是()。
小李夫妇因工作需要去外地出差几天,为照顾留在家中的小孩临时雇用一位保姆阿姨,随后付给王阿姨600元报酬,小李夫妇与王阿姨之间的法律关系的客体是()。
MakingandWritingWordsI.AbriefintroductionA.Makingwordsisconceptuallyanengagingandeffectiveinstructionaltask.
最新回复
(
0
)