证明:用二重积分证明∫0+∞e-x2dx=

admin2019-09-27  7

问题 证明:用二重积分证明∫0+∞e-x2dx=

选项

答案令D1={(x,y)|x2+y2≤R2,x≥0,y≥0}, S={(x,y)|0≤x≤R,0≤y≤R}, D2={(x,y)|x2+y2≤2R2,x≥0,y≥0} φ(x,y)=e-(x2+y2), 因为φ(x,y)=e-(x2+y2)≥0且D1=[*]=D2, 所以[*] 而[*] [*]e-(x2+y2)dxdy=∫0Re-x2dx∫0Re-y2dy=(∫0Re-x2dx)2, 于是[*], 令R→+∞,同时注意到∫0Re-x2dx>0,根据夹逼定理得∫0+∞e-x2dx=[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/7bCRFFFM
0

最新回复(0)